128 research outputs found

    Monolayer-Protected Nanoparticle Film Assemblies as Platforms for Controlling Interfacial and Adsorption Properties in Protein Monolayer Electrochemistry

    Get PDF
    Assembled films of nonaqueous nanoparticles, known as monolayer-protected clusters (MPCs), are investigated as adsorption platforms in protein monolayer electrochemistry (PME), a strategy for studying the electron transfer (ET) of redox proteins. Modified electrodes featuring MPC films assembled with various linking methods, including both electrostatic and covalent mechanisms, are employed to immobilize cytochrome c (cyt c) for electrochemical analysis. The background signal (non-Faradaic current) of these systems is directly related to the structure and composition of the MPC films, including nanoparticle core size, protecting ligand properties, as well as the linking mechanism utilized during assembly. Dithiol-linked films of Au225(C6)75 are identified as optimal films for PME by sufficiently discriminating against detrimental background current and exhibiting interfacial properties that are readily engineered for cyt c adsorption and electroactivity (Faradaic current). Surface concentrations and denaturation rates of adsorbed cyt c are dictated by specific manipulation of the individual MPCs composing the outer layer of the film. The use of specially designed, hydrophilic MPCs as a terminal film layer results in near-ideal cyt c voltammetry, attributed to a high degree of molecular level control of the necessary interfacial interactions and flexibility needed to create a uniform and effective binding of protein across large areas of a substrate. The electrochemical properties of cyt c at MPC films, including ET rate constants that are unaffected by the large ET distance introduced by MPC assemblies, are compared to traditional strategies employing self-assembled monolayers to immobilize cyt c. The incorporation of nanoparticles as protein adsorption platforms has implications for biosensor engineering as well as fundamental biological ET studies

    Thomson scattering from a shock front

    Full text link
    We have obtained a Thomson scattering spectrum in the collective regime by scattering a probe beam from a shock front, in an experiment conducted at the Omega laser at the Laboratory for Laser Energetics. The probe beam was created by frequency converting a beamline at Omega to a 2 ns2ns pulse of 0.263 μm0.263μm light, focused with a dedicated optical focusing system. The diagnostic system included collecting optics, spectrometer, and streak camera, with a scattering angle of 101°. The target included a primary shock tube, a 20-μm20-μm-thick beryllium drive disk, 0.3-μm0.3-μm-thick polyimide windows mounted on a secondary tube, and a gas fill tube. Detected acoustic waves propagated parallel to the target axis. Ten laser beams irradiated the beryllium disk with 0.351 μm0.351μm light at 5×1014 W/cm25×1014W∕cm2 for 1 ns1ns starting at toto, driving a strong shock through argon gas at ρo = 1 mg/ccρo=1mg∕cc. The 200 J200J probe beam fired at t = 19 nst=19ns for 2 ns2ns, and at t = 20.1 nst=20.1ns a 0.3 ns0.3ns signal was detected. We attribute this signal to scattering from the shocked argon, before the density increased above critical due to radiative collapse.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87893/2/10E504_1.pd

    Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns

    Get PDF
    Mapping and sequencing of the non-dormant evg mutant in peach [Prunus persica (L.) Batsch] identified six tandem-arrayed DAM (dormancy-associated MADS-box) genes as candidates for regulating growth cessation and terminal bud formation. To narrow the list of candidate genes, an attempt was made to associate bud phenology with the seasonal and environmental patterns of expression of the candidates in wild-type trees. The expression of the six peach DAM genes at the EVG locus of peach was characterized throughout an annual growing cycle in the field, and under controlled conditions in response to a long day–short day photoperiod transition. DAM1, 2, 4, 5, and 6 were responsive to a reduction in photoperiod in controlled conditions and the direction of response correlated with the seasonal timing of expression in field-grown trees. DAM3 did not respond to photoperiod and may be regulated by chilling temperatures. The DAM genes in peach appear to have at least four distinct patterns of expression. DAM1, 2, and 4 are temporally associated with seasonal elongation cessation and bud formation and are the most likely candidates for control of the evg phenotype

    Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides

    Get PDF
    Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing chitosan oligosaccharide dose with results compared to control (ie non-NO-releasing) chitosan oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-particle tracking microrheology were used to assess the structural integrity of the biofilm before and after antibacterial treatment. While tobramycin had no effect on the physical properties of the biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics capable of eradicating and physically disrupting P. aeruginosa biofilms

    Human Female Genital Tract Infection by the Obligate Intracellular Bacterium Chlamydia trachomatis Elicits Robust Type 2 Immunity

    Get PDF
    While Chlamydia trachomatis infections are frequently asymptomatic, mechanisms that regulate host response to this intracellular Gram-negative bacterium remain undefined. This investigation thus used peripheral blood mononuclear cells and endometrial tissue from women with or without Chlamydia genital tract infection to better define this response. Initial genome-wide microarray analysis revealed highly elevated expression of matrix metalloproteinase 10 and other molecules characteristic of Type 2 immunity (e.g., fibrosis and wound repair) in Chlamydia-infected tissue. This result was corroborated in flow cytometry and immunohistochemistry studies that showed extant upper genital tract Chlamydia infection was associated with increased co-expression of CD200 receptor and CD206 (markers of alternative macrophage activation) by endometrial macrophages as well as increased expression of GATA-3 (the transcription factor regulating TH2 differentiation) by endometrial CD4+ T cells. Also among women with genital tract Chlamydia infection, peripheral CD3+ CD4+ and CD3+ CD4- cells that proliferated in response to ex vivo stimulation with inactivated chlamydial antigen secreted significantly more interleukin (IL)-4 than tumor necrosis factor, interferon-γ, or IL-17; findings that repeated in T cells isolated from these same women 1 and 4 months after infection had been eradicated. Our results thus newly reveal that genital infection by an obligate intracellular bacterium induces polarization towards Type 2 immunity, including Chlamydia-specific TH2 development. Based on these findings, we now speculate that Type 2 immunity was selected by evolution as the host response to C. trachomatis in the human female genital tract to control infection and minimize immunopathological damage to vital reproductive structures. © 2013 Vicetti Miguel et al

    Observation of collapsing radiative shocks in laboratory experiments

    Full text link
    This article reports the observation of the dense, collapsed layer produced by a radiative shock in a laboratory experiment. The experiment uses laser irradiation to accelerate a thin layer of solid-density material to above 100 km/s100km∕s, the first to probe such high velocities in a radiative shock. The layer in turn drives a shock wave through a cylindrical volume of Xe gas (at ∼ 6 mg/cm3∼6mg∕cm3). Radiation from the shocked Xe removes enough energy that the shocked layer increases in density and collapses spatially. This type of system is relevant to a number of astrophysical contexts, providing the potential to observe phenomena of interest to astrophysics and to test astrophysical computer codes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87760/2/082901_1.pd

    Transcriptomics reveal the genetic coordination of early defense to Armillaria root rot (ARR) in Prunus spp

    Get PDF
    Armillaria root rot (ARR) poses a significant threat to the long-term productivity of stone-fruit and nut crops in the predominant production area of the United States. To mitigate this issue, the development of ARR-resistant and horticulturally-acceptable rootstocks is a crucial step towards the maintenance of production sustainability. To date, genetic resistance to ARR has been found in exotic plum germplasm and a peach/plum hybrid rootstock, ’MP-29‘. However, the widely-used peach rootstock Guardian® is susceptible to the pathogen. To understand the molecular defense mechanisms involved in ARR resistance in Prunus rootstocks, transcriptomic analyses of one susceptible and two resistant Prunus spp. were performed using two causal agents of ARR, including Armillaria mellea and Desarmillaria tabescens. The results of in vitro co-culture experiments revealed that the two resistant genotypes showed different temporal response dynamics and fungus-specific responses, as seen in the genetic response. Gene expression analysis over time indicated an enrichment of defense-related ontologies, including glucosyltransferase activity, monooxygenase activity, glutathione transferase activity, and peroxidase activity. Differential gene expression and co-expression network analysis highlighted key hub genes involved in the sensing and enzymatic degradation of chitin, GSTs, oxidoreductases, transcription factors, and biochemical pathways likely involved in Armillaria resistance. These data provide valuable resources for the improvement of ARR resistance in Prunus rootstocks through breeding
    corecore