218 research outputs found

    Agmatidine, a modified cytidine in the anticodon of archaeal tRNA\u3csup\u3eIle\u3c/sup\u3e, base pairs with adenosine but not with guanosine

    Get PDF
    Modification of the cytidine in the first anticodon position of the AUA decoding tRNAIle (tRNAIle 2 ) of bacteria and archaea is essential for this tRNA to read the isoleucine codon AUA and to differentiate between AUA and the methionine codon AUG. To identify the modified cytidine in archaea, we have purified this tRNA species from Haloarcula marismortui, established its codon reading properties, used liquid chromatography–mass spectrometry (LC-MS) to map RNase A and T1 digestion products onto the tRNA, and used LC-MS/MS to sequence the oligonucleotides in RNase A digests. These analyses revealed that the modification of cytidine in the anticodon of tRNAIle 2 adds 112 mass units to its molecular mass and makes the glycosidic bond unusually labile during mass spectral analyses. Accurate mass LC-MS and LC-MS/MS analysis of total nucleoside digests of the tRNAIle 2 demonstrated the absence in the modified cytidine of the C2-oxo group and its replacement by agmatine (decarboxy-arginine) through a secondary amine linkage. We propose the name agmatidine, abbreviation C+, for this modified cytidine. Agmatidine is also present in Methanococcus maripaludis tRNAIle 2 and in Sulfolobus solfataricus total tRNA, indicating its probable occurrence in the AUA decoding tRNAIle of euryarchaea and crenarchaea. The identification of agmatidine shows that bacteria and archaea have developed very similar strategies for reading the isoleucine codon AUA while discriminating against the methionine codon AUG

    The chemical stability of abasic RNA compared to abasic DNA

    Get PDF
    We describe the synthesis of an abasic RNA phosphoramidite carrying a photocleavable 1-(2-nitrophenyl)ethyl (NPE) group at the anomeric center and a triisopropylsilyloxymethyl (TOM) group as 2′-O-protecting group together with the analogous DNA and the 2′-OMe RNA abasic building blocks. These units were incorporated into RNA-, 2′-OMe-RNA- and DNA for the purpose of studying their chemical stabilities towards backbone cleavage in a comparative way. Stability measurements were performed under basic conditions (0.1 M NaOH) and in the presence of aniline (pH 4.6) at 37°C. The kinetics and mechanisms of strand cleavage were followed by High pressure liquid chromotography and ESI-MS. Under basic conditions, strand cleavage at abasic RNA sites can occur via β,δ-elimination and 2′,3′-cyclophosphate formation. We found that β,δ-elimination was 154-fold slower compared to the same mechanism in abasic DNA. Overall strand cleavage of abasic RNA (including cyclophosphate formation) was still 16.8 times slower compared to abasic DNA. In the presence of aniline at pH 4.6, where only β,δ-elimination contributes to strand cleavage, a 15-fold reduced cleavage rate at the RNA abasic site was observed. Thus abasic RNA is significantly more stable than abasic DNA. The higher stability of abasic RNA is discussed in the context of its potential biological role

    Rapid Molecular Detection of Rifampicin Resistance Facilitates Early Diagnosis and Treatment of Multi-Drug Resistant Tuberculosis: Case Control Study

    Get PDF
    Multi-drug resistant tuberculosis (MDR-TB) is a major public health concern since diagnosis is often delayed, increasing the risk of spread to the community and health care workers. Treatment is prolonged, and the total cost of treating a single case is high. Diagnosis has traditionally relied upon clinical suspicion, based on risk factors and culture with sensitivity testing, a process that can take weeks or months. Rapid diagnostic molecular techniques have the potential to shorten the time to commencing appropriate therapy, but have not been put to the test under field conditions.This retrospective case-control study aimed to identify risk factors for MDR-TB, and analyse the impact of testing for rifampicin resistance using RNA polymerase B (rpoB) mutations as a surrogate for MDR-TB. Forty two MDR-TB cases and 84 fully sensitive TB controls were matched by date of diagnosis; and factors including demographics, clinical presentation, microbiology findings, management and outcome were analysed using their medical records. Conventionally recognised risk factors for MDR-TB were absent in almost half (43%) of the cases, and 15% of cases were asymptomatic. A significant number of MDR-TB cases were identified in new entrants to the country. Using rpoB mutation testing, the time to diagnosis of MDR-TB was dramatically shortened by a median of 6 weeks, allowing patients to be commenced on appropriate therapy a median of 51days earlier than those diagnosed by conventional culture and sensitivity testing.MDR-TB is frequently an unexpected finding, may be asymptomatic, and is particularly prevalent among TB infected new entrants to the country. Molecular resistance testing of all acid fast bacilli positive specimens has the potential to rapidly identify MDR-TB patients and commence them on appropriate therapy significantly earlier than by conventional methods

    Pathways from agriculture-to-nutrition: Design and conduct of the National PoSHAN surveys of Nepal

    Get PDF
    Pathways through which agricultural production may influence markets, household food security, dietary patterns and nutritional status remain incompletely understood. While cross-sectional surveys are common, national, population-based, standardized data collection systems that annually monitor markets, local services, food security, dietary intake and nutritional status may be needed to understand time trends and relationships. We describe the design and methods of an annual nationally representative series of surveys of households with preschool aged children in 7 Village Development Committees (VDCs) sampled across each agroecological zone (mountains, hills and plains) in Nepal. Our sampling methodology yielded 21 VDCs, 63 wards (3 per VDC) and 40 markets in 2013, 2014 and 2016. Each year between ~ 4286-5097 consenting households were assessed for agricultural practices, socioeconomic conditions and food security; diet by 7-day food frequency and nutritional status by anthropometry (weight, height and arm circumference) of women (n=4509-5458) and children (n=5401- 5468) using standardized procedures. Due to a major earthquake in April 2015, a truncated sample (wards n=27) was reached in 2015. Three VDCs, each representing a centroid of surveyed VDCs in each zone, served as year-round sentinel sites in which we conducted six surveys of seasonal conditions from 2013-2015. Representative, sameseason, same-site surveys offer a feasible national framework for assessing annual status and trends in agricultural, food security and nutritional conditions to identify opportunities for policy and program interventions and observe population responses along a continuum leading from agriculture to nutrition

    Structure-Function Analysis of Human TYW2 Enzyme Required for the Biosynthesis of a Highly Modified Wybutosine (yW) Base in Phenylalanine-tRNA

    Get PDF
    Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis

    Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals

    Get PDF
    IMPORTANCE: Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE: To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES: The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS: The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE: To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals

    The concept of RNA-assisted protein folding: the role of tRNA

    Get PDF
    We suggest that tRNA actively participates in the transfer of 3D information from mRNA to peptides - in addition to its well-known, "classical" role of translating the 3-letter RNA codes into the one letter protein code. The tRNA molecule displays a series of thermodynamically favored configurations during translation, a movement which places the codon and coded amino acids in proximity to each other and make physical contact between some amino acids and their codons possible. This specific codon-amino acid interaction of some selected amino acids is necessary for the transfer of spatial information from mRNA to coded proteins, and is known as RNA-assisted protein folding

    Health Related Quality of Life among Patients with Tuberculosis and HIV in Thailand

    Get PDF
    INTRODUCTION: Health utilities of tuberculosis (TB) patients may be diminished by side effects from medication, prolonged treatment duration, physical effects of the disease itself, and social stigma attached to the disease. METHODS: We collected health utility data from Thai patients who were on TB treatment or had been successfully treated for TB for the purpose of economic modeling. Structured questionnaire and EuroQol (EQ-5D) and EuroQol visual analog scale (EQ-VAS) instruments were used as data collection tools. We compared utility of patients with two co-morbidities calculated using multiplicative model (U(CAL)) with the direct measures and fitted Tobit regression models to examine factors predictive of health utility and to assess difference in health utilities of patients in various medical conditions. RESULTS: Of 222 patients analyzed, 138 (62%) were male; median age at enrollment was 40 years (interquartile range [IQR], 35-47). Median monthly household income was 6,000 Baht (187 US;IQR,4,00015,000Baht[125469US; IQR, 4,000-15,000 Baht [125-469 US]). Concordance correlation coefficient between utilities measured using EQ-5D and EQ-VAS (U(EQ-5D) and U(VAS), respectively) was 0.6. U(CAL) for HIV-infected TB patients was statistically different from the measured U(EQ-5D) (p-value<0.01) and U(VAS) (p-value<0.01). In tobit regression analysis, factors independently predictive of U(EQ-5D) included age and monthly household income. Patients aged ≥40 years old rated U(EQ-5D) significantly lower than younger persons. Higher U(EQ-5D) was significantly associated with higher monthly household income in a dose response fashion. The median U(EQ-5D) was highest among patients who had been successfully treated for TB and lowest among multi-drug resistant TB (MDR-TB) patients who were on treatment. CONCLUSIONS: U(CAL) of patients with two co-morbidities overestimated the measured utilities, warranting further research of how best to estimate utilities of patients with such conditions. TB and MDR-TB treatments impacted on patients' self perceived health status. This effect diminished after successful treatment

    Strategies for Treating Latent Multiple-Drug Resistant Tuberculosis: A Decision Analysis

    Get PDF
    BACKGROUND: The optimal treatment for latent multiple-drug resistant tuberculosis infection remains unclear. In anticipation of future clinical trials, we modeled the expected performance of six potential regimens for treatment of latent multiple-drug resistant tuberculosis. METHODS: A computerized Markov model to analyze the total cost of treatment for six different regimens: Pyrazinamide/ethambutol, moxifloxacin monotherapy, moxifloxacin/pyrazinamide, moxifloxacin/ethambutol, moxifloxacin/ethionamide, and moxifloxacin/PA-824. Efficacy estimates were extrapolated from mouse models and examined over a wide range of assumptions. RESULTS: In the base-case, moxifloxacin monotherapy was the lowest cost strategy, but moxifloxacin/ethambutol was cost-effective at an incremental cost-effectiveness ratio of $21,252 per quality-adjusted life-year. Both pyrazinamide-containing regimens were dominated due to their toxicity. A hypothetical regimen of low toxicity and even modest efficacy was cost-effective compared to "no treatment." CONCLUSION: In our model, moxifloxacin/ethambutol was the preferred treatment strategy under a wide range of assumptions; pyrazinamide-containing regimens fared poorly because of high rates of toxicity. Although more data are needed on efficacy of treatments for latent MDR-TB infection, data on toxicity and treatment discontinuation, which are easier to obtain, could have a substantial impact on public health practice

    A Distinct Translation Initiation Mechanism Generates Cryptic Peptides for Immune Surveillance

    Get PDF
    MHC class I molecules present a comprehensive mixture of peptides on the cell surface for immune surveillance. The peptides represent the intracellular protein milieu produced by translation of endogenous mRNAs. Unexpectedly, the peptides are encoded not only in conventional AUG initiated translational reading frames but also in alternative cryptic reading frames. Here, we analyzed how ribosomes recognize and use cryptic initiation codons in the mRNA. We find that translation initiation complexes assemble at non-AUG codons but differ from canonical AUG initiation in response to specific inhibitors acting within the peptidyl transferase and decoding centers of the ribosome. Thus, cryptic translation at non-AUG start codons can utilize a distinct initiation mechanism which could be differentially regulated to provide peptides for immune surveillance
    corecore