250 research outputs found

    Thermoperiodic Control of Hypocotyl Elongation Depends on Auxin-Induced Ethylene Signaling That Controls Downstream PHYTOCHROME INTERACTING FACTOR3 Activity

    No full text
    <p>We show that antiphase light-temperature cycles (negative day-night temperature difference [2DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under 2DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under 2DIF. Both auxin biosynthesis and auxin signaling were reduced during 2DIF. In addition, expression of several ACC Synthase was reduced under 2DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under 2DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under 2DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.</p

    Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.

    Full text link

    An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker

    Get PDF
    We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed –0.65 PgC/yr (1 petagram = 10^15 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of –0.4 to –1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to –0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov

    Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2

    Get PDF
    The triple oxygen isotope signature Δ¹⁷O in atmospheric CO₂, also known as its “¹⁷O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO₂ by vegetation through photosynthesis). We present the first global 3-D model simulations for Δ¹⁷O in atmospheric CO₂ together with a detailed model description and sensitivity analyses. In our 3-D model framework we include the stratospheric source of Δ¹⁷O in CO₂ and the surface sinks from vegetation, soils, ocean, biomass burning, and fossil fuel combustion. The effect of oxidation of atmospheric CO on Δ¹⁷O in CO2 is also included in our model. We estimate that the global mean Δ¹⁷O (defined as Δ¹⁷O = ln( ¹⁷O + 1) − RL · ln( ¹⁸O + 1) with RL = 0.5229) of CO₂ in the lowest 500 m of the atmosphere is 39.6 per meg, which is ∼20 per meg lower than estimates from existing box models. We compare our model results with a measured stratospheric Δ¹⁷O in CO₂ profile from Sodankylä (Finland), which shows good agreement. In addition, we compare our model results with tropospheric measurements of Δ¹⁷O in CO₂ from Göttingen (Germany) and Taipei (Taiwan), which shows some agreement but we also find substantial discrepancies that are subsequently discussed. Finally, we show model results for Zotino (Russia), Mauna Loa (United States), Manaus (Brazil), and South Pole, which we propose as possible locations for future measurements of Δ¹⁷O in tropospheric CO₂ that can help to further increase our understanding of the global budget of Δ¹⁷O in atmospheric CO₂

    The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    Get PDF
    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite-derived soil moisture. We study whether the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5-10% on annual GPP and TER, tens of percent on local NEE, and 2% on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite-derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite-derived soil moisture improves the simulated soil moisture.Peer reviewe

    The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    Get PDF
    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite derived soil moisture. We study if the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5-10% on annual GPP and TER, and tens of percent on local NEE, and 2% on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite derived soil moisture improves the simulated soil moisture

    HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion

    Get PDF
    Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis

    Behavioral determinants as predictors of return to work after long-term sickness absence: an application of the theory of planned behavior

    Get PDF
    Background The aim of this prospective, longitudinal cohort study was to analyze the association between the three behavioral determinants of the theory of planned behavior (TPB) model-attitude, subjective norm and self-efficacy-and the time to return-to-work (RTW) in employees on long-term sick leave. Methods The study was based on a sample of 926 employees on sickness absence (maximum duration of 12 weeks). The employees filled out a baseline questionnaire and were subsequently followed until the tenth month after listing sick. The TPB-determinants were measured at baseline. Work attitude was measured with a Dutch language version of the Work Involvement Scale. Subjective norm was measured with a self-structured scale reflecting a person's perception of social support and social pressure. Self-efficacy was measured with the three subscales of a standardised Dutch version of the general self-efficacy scale (ALCOS): willingness to expend effort in completing the behavior, persistence in the face of adversity, and willingness to initiate behavior. Cox proportional hazards regression analyses were used to identify behavioral determinants of the time to RTW. Results Median time to RTW was 160 days. In the univariate analysis, all potential prognostic factors were significantly associated (P < 0.15) with time to RTW: work attitude, social support, and the three subscales of self-efficacy. The final multivariate model with time to RTW as the predicted outcome included work attitude, social support and willingness to expend effort in completing the behavior as significant predictive factors. Conclusions This prospective, longitudinal cohort-study showed that work attitude, social support and willingness to expend effort in completing the behavior are significantly associated with a shorter time to RTW in employees on long-term sickness absence. This provides suggestive evidence for the relevance of behavioral characteristics in the prediction of duration of sickness absence. It may be a promising approach to address the behavioral determinants in the development of interventions focusing on RTW in employees on long-term sick leave
    corecore