17,745 research outputs found
Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering
Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced.Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering.Methods. Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition.Results. Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ā³10ā4. Loosely bound grains with surface binding energies of the order of 0.1ā1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering.Conclusions. The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres
Meteorological analysis models, volume 2
As part of the SEASAT program, two sets of analysis programs were developed. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. Both sets use operational data provided by a weather bureau. The analysis output is used to initialize the primitive equation forecast models also included
Critical velocity ionisation in substellar atmospheres
The observation of radio, X-ray and HĪ± emission from substellar objects indicates the presence of plasma regions and associated high-energy processes in their surrounding envelopes.Ā This paper numerically simulates and characterises Critical Velocity Ionisation, a potential ionisation process, that can efficiently generate plasma as a result of neutral gas flows interacting with seed magnetized plasmas. By coupling a Gas-MHD interactions code (to simulate the ionisation mechanism) with a substellar global circulation model (to provide the required gas flows) we quantify the spatial extent of the resulting plasma regions, their degree of ionisation and their lifetime for a typical substellar atmosphere. It is found that the typical average ionisation fraction reached at equilibrium (where the ionisation and recombination rates are equal and opposite) ranges from 10-5 to 10-8, at pressures between 10-1 and 10-3 bar, with a trend of increasing ionisation fraction with decreasing atmospheric pressure. The ionisation fractions reached as a result of Critical Velocity Ionisation are sufficient to allow magnetic fields to couple to gas flows in the atmosphere
The effect of internal gravity waves on cloud evolution in sub-stellar atmospheres
Context. Sub-stellar objects exhibit photometric variability which is believed to be caused by a number of processes such as magnetically-driven spots or inhomogeneous cloud coverage. Recent sub-stellar models have shown that turbulent flows and waves, including internal gravity waves, may play an important role in cloud evolution.Aims. The aim of this paper is to investigate the effect of internal gravity waves on dust cloud nucleation and dust growth, and whether observations of the resulting cloud structures could be used to recover atmospheric density information.Methods. For a simplified atmosphere in two dimensions, we numerically solve the governing fluid equations to simulate the effect on dust nucleation and mantle growth as a result of the passage of an internal gravity wave. Furthermore, we derive an expression that relates the properties of the wave-induced cloud structures to observable parameters in order to deduce the atmospheric density.Results. Numerical simulations show that the density, pressure and temperature variations caused by gravity waves lead to an increase of dust nucleation by up to a factor 20, and dust mantle growth rate by up to a factor 1:6, compared to their equilibrium values. Through an exploration of the wider sub-stellar parameter space, we show that in absolute terms, the increase in dust nucleation due to internal gravity waves is stronger in cooler (T dwarfs) and TiO2-rich sub-stellar atmospheres. The relative increase however is greater in warm(L dwarf) and TiO2-poor atmospheres due to conditions less suited for efficient nucleation at equilibrium. These variations lead to banded areas in which dust formation is much more pronounced, and lead to banded cloud structures similar to those observed on Earth. Conclusions. Using the proposed method, potential observations of banded clouds could be used to estimate the atmospheric density of sub-stellar objects
Study of zero-gravity, vapor/liquid separators
Heat exchange, mechanical separation, surface tension, and dielectrophoretic methods of separating vapor from liquid at zero gravity for vapor ventin
A CS J = 2 1 survey of the galactic center region
A CS map of the galactic center region is presented consisting of 15,000 spectra covering -1 deg. less than 3. deg. 6 min., -0 deg.4 min. less than b less than 0 deg. 4 min., each having an rms noise of 0.15 K in 1 MHz filters. CS is a high-excitation molecule, meaning that it is excited into emission only when the ambient density is less than n much greater than or approx. 2 x 10 to the 4th power/cu cm CS emission in the inner 2 deg. of the galaxy is nearly as pervasive as CO emission, in stark contrast to the outer galaxy where CS emission is confined to cloud cores. Galactic center clouds are on average much more dense than outer Galaxy clouds. This can be understood as a necessary consequence of the strong tidal stresses in the inner galaxy
Study of low gravity propellant transfer Quarterly progress report, 23 Dec. 1970 - 30 Apr. 1971
Bellows, metallic diaphragm, and paddle vortex subcritical transfer systems designs and high pressure systems analyses for orbital space station cryogen
Gated rotation mechanism of site-specific recombination by ĻC31 integrase
Integrases, such as that of the Streptomyces temperate bacteriophage ĻC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ĻC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a āsubunit rotationā mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ĻC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid āphesā recombination sites, each of which comprises a ĻC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180Ā° rotation. However, multiple processive ā360Ā° rotationā rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory āgatingā mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round
- ā¦