11 research outputs found
Embedded star formation in S4G galaxy dust lanes
Star-forming regions that are visible at 3.6 μm and Hα but not in the u, g, r, i, z bands of the Sloan Digital Sky Survey are measured in five nearby spiral galaxies to find extinctions averaging ∼3.8 mag and stellar masses averaging ∼5 × 10 M . These regions are apparently young star complexes embedded in dark filamentary shock fronts connected with spiral arms. The associated cloud masses are ∼10 M . The conditions required to make such complexes are explored, including gravitational instabilities in spiral-shocked gas and compression of incident clouds. We find that instabilities are too slow for a complete collapse of the observed spiral filaments, but they could lead to star formation in the denser parts. Compression of incident clouds can produce a faster collapse but has difficulty explaining the semi-regular spacing of some regions along the arms. If gravitational instabilities are involved, then the condensations have the local Jeans mass. Also in this case, the near-simultaneous appearance of equally spaced complexes suggests that the dust lanes, and perhaps the arms too, are relatively young. © 2014. The American Astronomical Society. All rights reserved.</p
89 New Ultracool Dwarf Co-Moving Companions Identified With The Backyard Worlds: Planet 9 Citizen Science Project
We report the identification of 89 new systems containing ultracool dwarf
companions to main sequence stars and white dwarfs, using the citizen science
project Backyard Worlds: Planet 9 and cross-reference between Gaia and
CatWISE2020. Thirty-two of these companions and thirty-three host stars were
followed up with spectroscopic observations, with companion spectral types
ranging from M7-T9 and host spectral types ranging from G2-M9. These systems
exhibit diverse characteristics, from young to old ages, blue to very red
spectral morphologies, potential membership to known young moving groups, and
evidence of spectral binarity in 9 companions. Twenty of the host stars in our
sample show evidence for higher order multiplicity, with an additional 11 host
stars being resolved binaries themselves. We compare this sample's
characteristics with those of the known stellar binary and exoplanet
populations, and find our sample begins to fill in the gap between directly
imaged exoplanets and stellary binaries on mass ratio-binding energy plots.
With this study, we increase the population of ultracool dwarf companions to
FGK stars by 42\%, and more than triple the known population of ultracool
dwarf companions with separations larger than 1,000 au, providing excellent
targets for future atmospheric retrievals.Comment: 61 pages, 11 figures, 11 tables. Accepted for publication in A
From Data to Software to Science with the Rubin Observatory LSST
The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) dataset
will dramatically alter our understanding of the Universe, from the origins of
the Solar System to the nature of dark matter and dark energy. Much of this
research will depend on the existence of robust, tested, and scalable
algorithms, software, and services. Identifying and developing such tools ahead
of time has the potential to significantly accelerate the delivery of early
science from LSST. Developing these collaboratively, and making them broadly
available, can enable more inclusive and equitable collaboration on LSST
science.
To facilitate such opportunities, a community workshop entitled "From Data to
Software to Science with the Rubin Observatory LSST" was organized by the LSST
Interdisciplinary Network for Collaboration and Computing (LINCC) and partners,
and held at the Flatiron Institute in New York, March 28-30th 2022. The
workshop included over 50 in-person attendees invited from over 300
applications. It identified seven key software areas of need: (i) scalable
cross-matching and distributed joining of catalogs, (ii) robust photometric
redshift determination, (iii) software for determination of selection
functions, (iv) frameworks for scalable time-series analyses, (v) services for
image access and reprocessing at scale, (vi) object image access (cutouts) and
analysis at scale, and (vii) scalable job execution systems.
This white paper summarizes the discussions of this workshop. It considers
the motivating science use cases, identified cross-cutting algorithms,
software, and services, their high-level technical specifications, and the
principles of inclusive collaborations needed to develop them. We provide it as
a useful roadmap of needs, as well as to spur action and collaboration between
groups and individuals looking to develop reusable software for early LSST
science.Comment: White paper from "From Data to Software to Science with the Rubin
Observatory LSST" worksho
From Data to Software to Science with the Rubin Observatory LSST
editorial reviewedThe Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) dataset will dramatically alter our understanding of the Universe, from the origins of the Solar System to the nature of dark matter and dark energy. Much of this research will depend on the existence of robust, tested, and scalable algorithms, software, and services. Identifying and developing such tools ahead of time has the potential to significantly accelerate the delivery of early science from LSST. Developing these collaboratively, and making them broadly available, can enable more inclusive and equitable collaboration on LSST science. To facilitate such opportunities, a community workshop entitled "From Data to Software to Science with the Rubin Observatory LSST" was organized by the LSST Interdisciplinary Network for Collaboration and Computing (LINCC) and partners, and held at the Flatiron Institute in New York, March 28-30th 2022. The workshop included over 50 in-person attendees invited from over 300 applications. It identified seven key software areas of need: (i) scalable cross-matching and distributed joining of catalogs, (ii) robust photometric redshift determination, (iii) software for determination of selection functions, (iv) frameworks for scalable time-series analyses, (v) services for image access and reprocessing at scale, (vi) object image access (cutouts) and analysis at scale, and (vii) scalable job execution systems. This white paper summarizes the discussions of this workshop. It considers the motivating science use cases, identified cross-cutting algorithms, software, and services, their high-level technical specifications, and the principles of inclusive collaborations needed to develop them. We provide it as a useful roadmap of needs, as well as to spur action and collaboration between groups and individuals looking to develop reusable software for early LSST science
Embedded Star Formation in SG Galaxy Dust Lanes
Star-forming regions that are visible at 3.6 microns and Halpha but not in
the u,g,r,i,z bands of the Sloan Digital Sky survey (SDSS), are measured in
five nearby spiral galaxies to find extinctions averaging ~3.8 mag and stellar
masses averaging ~5x10^4 Msun. These regions are apparently young star
complexes embedded in dark filamentary shock fronts connected with spiral arms.
The associated cloud masses are ~10^7 Msun. The conditions required to make
such complexes are explored, including gravitational instabilities in spiral
shocked gas and compression of incident clouds. We find that instabilities are
too slow for a complete collapse of the observed spiral filaments, but they
could lead to star formation in the denser parts. Compression of incident
clouds can produce a faster collapse but has difficulty explaining the
semi-regular spacing of some regions along the arms. If gravitational
instabilities are involved, then the condensations have the local Jeans mass.
Also in this case, the near-simultaneous appearance of equally spaced complexes
suggests that the dust lanes, and perhaps the arms too, are relatively young.Comment: 16 pages, 5 figures, ApJ in pres
A Wide Planetary Mass Companion Discovered through the Citizen Science Project Backyard Worlds: Planet 9
Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary - CWISER J124332.12+600126.2 (W1243) - is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS (J-K s = 2.72), low surface gravity source that we classify as L6-L8γ. Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10-150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color-magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color-magnitude and color-color diagrams, and the rotation rate revealed in multiple TESS sectors are all consistent with an age of 50-150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s-2, and a mass of 15 ± 5 M Jup. We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess
89 New Ultracool Dwarf Comoving Companions Identified with the Backyard Worlds: Planet 9 Citizen Science Project
We report the identification of 89 new systems containing ultracool dwarf companions to main-sequence stars and white dwarfs, using the citizen science project Backyard Worlds: Planet 9 and cross-reference between Gaia and CatWISE2020. 32 of these companions and 33 host stars were followed up with spectroscopic observations, with companion spectral types ranging from M7–T9 and host spectral types ranging from G2–M9. These systems exhibit diverse characteristics, from young to old ages, blue to very red spectral morphologies, potential membership to known young moving groups, and evidence of spectral binarity in nine companions. 20 of the host stars in our sample show evidence for higher-order multiplicity, with an additional 11 host stars being resolved binaries themselves. We compare this sample’s characteristics with those of the known stellar binary and exoplanet populations, and find our sample begins to fill in the gap between directly imaged exoplanets and stellar binaries on mass ratio–binding energy plots. With this study, we increase the population of ultracool dwarf companions to FGK stars by ∼42%, and more than triple the known population of ultracool dwarf companions with separations larger than 1000 au, providing excellent targets for future atmospheric retrievals