84 research outputs found

    A numerical assessment of the free energy function for fractional-order relaxation

    Get PDF
    In this paper the authors discuss the free energy function of fractional hereditary materials. The evaluation of the free energy has been obtained from a mechanical model that represents, exactly, the power-law relaxation of the material. The mechanical model separates, exactly, the elastic and the viscous phases, yielding the stored energy of the material that corresponds to the Staverman-Schwarz stress based free energy. Some numerical approximations of the free energy function in terms of the discretized rheological model have been reported in the paper

    Analytical Solutions of Viscoelastic Nonlocal Timoshenko Beams

    Get PDF
    A consistent nonlocal viscoelastic beam model is proposed in this paper. Specifically, a Timoshenko bending problem, where size-and time-dependent effects cannot be neglected, is investigated. In order to inspect scale phenomena, a stress-driven nonlocal formulation is used, whereas to simulate time-dependent effects, fractional linear viscoelasticity is considered. These two approaches are adopted to develop a new Timoshenko bending model. Analytical solutions and application samples of the proposed formulation are presented. Moreover, in order to show influences of viscoelastic and size effects on mechanical response, parametric analyses are provided. The contributed results can be useful for the design and optimization of small-scale devices exhibiting flexural behaviour

    Prestress and experimental tests on fractional viscoelastic materials

    Get PDF
    Creep and/or Relaxation tests on viscoelastic materials show a power-law trend. Based upon Boltzmann superposition principle the constitutive law with a power-law kernel is ruled by the Caputo's fractional derivative. Fractional constitutive law posses a long memory and then the parameters obtained by best fitting procedures on experimental data are strongly influenced by the prestress on the specimen. As in fact during the relaxation test the imposed history of deformation is not instantaneously applied, since a unit step function may not be realized by the test machine. Aim of this paper, it is shown that, the experimental procedure, and in particular the initial ramp to reach the constant stress (or strain) strongly influences the best fitting procedure and the coefficients of the power-law

    Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs

    Get PDF
    Abstract Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo

    Association between renin and atherosclerotic burden in subjects with and without type 2 diabetes.

    Get PDF
    Published onlineJournal ArticleThis is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Activation of the renin-angiotensin-aldosterone-system (RAAS) has been proposed to contribute to development of vascular complications in type 2 diabetes (T2D). The aim of the present study was to determine if plasma renin levels are associated with the severity of vascular changes in subjects with and without T2D. METHODS: Renin was analyzed by the Proximity Extension Assay in subjects with (n = 985) and without (n = 515) T2D participating in the SUMMIT (SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools) study and in 205 carotid endarterectomy patients. Vascular changes were assessed by determining ankle-brachial pressure index (ABPI), carotid intima-media thickness (IMT), carotid plaque area, pulse wave velocity (PWV) and the reactivity hyperemia index (RHI). RESULTS: Plasma renin was elevated in subjects with T2D and demonstrated risk factor-independent association with prevalent cardiovascular disease both in subjects with and without T2D. Renin levels increased with age, body mass index, HbA1c and correlated inversely with HDL. Subjects with T2D had more severe carotid disease, increased arterial stiffness, and impaired endothelial function. Risk factor-independent associations between renin and APBI, bulb IMT, carotid plaque area were observed in both T2D and non-T2D subjects. These associations were independent of treatment with RAAS inhibitors. Only weak associations existed between plasma renin and the expression of pro-inflammatory and fibrous components in plaques from 205 endarterectomy patients. CONCLUSIONS: Our findings provide clinical evidence for associations between systemic RAAS activation and atherosclerotic burden and suggest that this association is of particular importance in T2D.Innovative Medicines Initiative (the SUMMIT consortium, IMI-2008/115006, the Swedish Heart-Lung Foundation, the Swedish Research Council and Marianne and Marcus Wallenberg Foundation)

    Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures

    Get PDF
    The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside of the linear domain but in this case the parameters of the model depend on the stress level

    Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis

    Plaque characteristics and biomarkers predicting regression and progression of carotid atherosclerosis

    Get PDF
    This is the final version. Available on open access from Cell Press via the DOI in this recordData and code availability: • All data reported in this paper will be shared by the lead contact upon request. • This paper does not report original code. • Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.The factors that influence the atherosclerotic disease process in high-risk individuals remain poorly understood. Here, we used a combination of vascular imaging, risk factor assessment, and biomarkers to identify factors associated with 3-year change in carotid disease severity in a cohort of high-risk subjects treated with preventive therapy (n = 865). The results show that changes in intima-media thickness (IMT) are most pronounced in the carotid bulb. Progression of bulb IMT demonstrates independent associations with baseline bulb IMT, the plaque gray scale median (GSM), and the plasma level of platelet-derived growth factor (PDGF) (standardized β-coefficients and 95% confidence interval [CI] -0.14 [-0.06 to -0.02] p = 0.001, 0.15 [0.02-0.07] p = 0.001, and 0.20 [0.03-0.07] p < 0.001, respectively). Plasma PDGF correlates with the plaque GSM (0.23 [0.15-0.29] p < 0.001). These observations provide insight into the atherosclerotic process in high-risk subjects by showing that progression primarily occurs in fibrotic plaques and is associated with increased levels of PDGF.Innovative Medicines InitiativeSwedish Heart-Lung FoundationNational Institute for Health Research (NIHR

    Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    Get PDF
    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated

    On the dynamics of fractional visco-elastic beams

    No full text
    With increasing advanced manufacturing process, visco-elastic materials are very attractive for mitigation of vibrations, provided that you may have advanced studies for capturing the realistic behavior of such materials. Experimental verification of the visco-elastic behavior is limited to some well-known low order models as the Maxwell or Kelvin models. However, both models are not sufficient to model the visco-elastic behavior of real materials, since only the Maxwell type can capture the relaxation tests and the Kelvin the creep tests, respectively. Very recently, it has been stressed that the most suitable model for capturing the visco-elastic behavior is the spring-pot, characterized by a fractional constitutive law. Based on this assumption, the quasi-static behavior has been investigated very recently, however for noise control there is a need of exploiting the dynamic behavior of such a fractional visco-elastic beam. The present paper introduces the dynamic response of fractional visco-elastic Euler-Bernoulli beam under dynamic loads
    corecore