411 research outputs found

    Semantic Video Indexing Using MPEG Motion Vectors

    Get PDF
    With the diffusion of large video databases and "electronic program guides", the problem of semantic video indexing is of great interest. In literature we can found many video indexing algorithms, based on various types of low-level features, but the problem of semantic video indexing is less studied and surely it is a great challenging one. In this paper we present a particular semantic video indexing algorithm based on the motion information extracted from MPEG compressed bit-stream. This algorithm is an example of solution to the problem of finding a semantic event (scoring of a goal) in case of specific type of sequences (soccer video)

    Voluntary Pilot Action Through Biodynamics for Helicopter Flight Dynamics Simulation

    Get PDF
    This work presents the integration of detailed models of a pilot controlling a helicopter along the heave axis through the collective control inceptor. The action on the control inceptor is produced through a biomechanical model of the pilot’s limbs, by commanding the activation of the related muscle bundles. Such activation, in turn, is determined by defining the muscle elongations required to move the control inceptor in order to obtain the control of the vehicle according to a high-level model of the voluntary action of the pilot acting as a regulator for the vehicle. The biomechanical model of the pilot’s limbs and the aeromechanical model of the helicopter are implemented in a general-purpose multibody simulation. The helicopter model, the biomechanical model of the pilot’s limbs, the cognitive model of the pilot, and their integration are discussed. The integrated model is applied to the simulation of simple, yet representative, mission task elements

    Dust altitude and infrared optical depth from AIRS

    Get PDF
    International audienceWe show that mineral dust optical depth and altitude can be retrieved from the Aqua – Advanced Infrared Radiation Sounder (AIRS) measurements. Sensitivity studies performed with a high spectral resolution radiative transfer code show that dust effect on brightness temperatures may reach about 10 Kelvins for some channels. Using a Look-Up-Table approach, we retrieve not only the 10 µm optical depth but also the altitude of Saharan dust layer, above the Atlantic Ocean, from April to September 2003. A key point of our method relies in its ability to retrieve dust altitude from satellite observations. The time and space distribution of the optical depth is in good agreement with the Moderate resolution Imaging Spectroradiometer (MODIS) products. Comparing MODIS and AIRS aerosol optical depths, we find that the ratio between infrared and visible optical depths decreases during transport from 0.35 to 0.22, revealing a loss in coarse particles caused by gravitational settling. The evolution of dust altitude from spring to summer is in agreement with the transport seasonality

    Evolution of mating systems in Euplotes

    Get PDF
    Ciliates control their sexual phenomenon of conjugation (or mating) through a genetic mechanism of mating types, which may either be only two within a species (recalling the duality of sexes in animals), or multiple (recalling self/non-self compatibility systems in plants and fungi). The nearly one hundred species of the most ubiquitously distributed ciliate, Euplotes, all evolved multiple mating types. Based on analyses of Mendelian genetics, these mating types have for long been assumed to be determined by multi-allelic series of genes inherited at a single genetic locus (i.e., the mating-type or mat locus) and responsible for the synthesis of mating type-pecific signaling proteins. The chemical characterization of these signaling proteins (known as pheromones) from an array of Euplotes species has now permitted us to evolve in the study of Euplotes mating types from an approach of Mendelian genetics to an approach of molecular genetics. In this new experimental context, we have cloned and characterized structurally the pheromone (mating-type) gene families of Euplotes species that take different positions in the phylogenetic tree of the genus Euplotes. It appeared that, in accord with the prediction of the Mendelian genetics, early branching species (e.g., E. polaris, E. raikovi and E. nobilii) inherit their mating types at a single multi-allelic locus. However, in disagreement with the prediction of the Mendelian genetics, late branching species (e.g., E. crassus and E. focardii) inherit their mating types at two distinct loci that are likely the result of an event of gene duplication in the germinal (micronuclear) genome. One locus appears to be structurally and functionally homologous with the multi-allelic locus of the early branching species, while the second locus appears to be structurally homologous but functionally divergent

    Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

    Get PDF
    We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems

    Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals

    Get PDF
    Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear (13C, 14/15N, 19F, and 127I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N+(CH 2)10N+(CH3)3][2 I -]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. 13C and 15N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using 14N NMR spectroscopy, with a systematic decrease in the 14N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at 127I solid-state NMR spectroscopy experiments are presented and variable-temperature 19F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond

    Flattened and wrinkled encapsulated droplets: Shape-morphing induced by gravity and evaporation

    Full text link
    We report surprising morphological changes of suspension droplets (containing class II hydrophobin protein HFBI from Trichoderma reesei and water) as they evaporate with a contact line pinned on a rigid solid substrate. Both pendant and sessile droplets display the formation of an encapsulating elastic film as the bulk concentration of solute reaches a critical value during evaporation, but the morphology of the droplet varies significantly: for sessile droplets, the elastic film ultimately crumples in a nearly flattened area close to the apex while in pendant droplets, circumferential wrinkling occurs close to the contact line. These different morphologies are understood through a gravito-elasto-capillary model that predicts the droplet morphology and the onset of shape changes, as well as showing that the influence of the direction of gravity remains crucial even for very small droplets (where the effect of gravity can normally be neglected). The results pave the way to control droplet shape in several engineering and biomedical applications.Comment: 5 pages, 4 figure

    Fluorine-induced J-aggregation enhances emissive properties of a new NLO push–pull chromophore

    Get PDF
    A new fluorinated push–pull chromophore with good second-order NLO properties even in concentrated solution shows solid state intermolecular aryl–fluoroaryl interactions leading to J-aggregates with intense solid state luminescence
    • …
    corecore