48 research outputs found

    Effects of ripening stages and of plant vegetative vigor on the phenolic composition of grapes (Vitis vinifera L.) cv. Cabernet Sauvignon in the Maipo Valley (Chile)

    Get PDF
    Quantitative changes in the composition of phenolic compounds in skins and seeds were determined during ripening of grape of Cabernet Sauvignon vines growing with low, medium or high vigor. Compounds in the skins were gallic and syringic acid, (+)-catechin, (-)-epicatechin, quercetin-3-galactoside, quercetin-3-rutinoside, quercetin-3-arabinglucoside, quercetin-3-glucoside, and quercetin-3-rhamnoside, kaempferol-3-rutinoside and kaempferol-3-glucoside. The following compounds were identified in seeds: gallic acid, (+)-catechin, (-)-epicatechin, and procyanidins B1, B2, B3 and B4. The composition of compounds depended on the stage of ripening and vigor. No clear relationship was found between groups of compounds.

    Influence of Maturity and Vineyard Location on Free and Bound Aroma Compounds of Grapes from the País Cultivar

    Get PDF
    Some of the volatile compounds present in grapes give wine is its unique and genuine characteristics.  “Terroir” and berry maturity are considered to be the main influences on the expression of these characteristics. This work was undertaken to establish the specific characteristics that define Vitis vinifera cv. País, based on its aromatic profile and free and bound compounds (glycosides), and to assess the effects of location and maturity. Free and bound volatile compounds presented significant differences in the three locations studied. The total amount of free alcohols, acids and ketones depended on the location. During ripening, the amount of aroma precursors increased in all chemical groups in every location studied, and they were found mainly in the skins. With reference to free volatile compounds, it was found that cis-2-hexenol could be a good candidate to assess maturity, and that terpene content seemed to be strongly related to the vineyard location and cultivar conditions. Also, data analysis showed that the free aroma profile seemed to be influenced more by the maturity of the grapes and the bound aroma fraction more by the location

    The Histidine-Phosphocarrier Protein of the Phosphoenolpyruvate: Sugar Phosphotransferase System of Bacillus sphaericus Self-Associates

    Get PDF
    The phosphotransferase system (PTS) is involved in the use of carbon sources in bacteria. Bacillus sphaericus, a bacterium with the ability to produce insecticidal proteins, is unable to use hexoses and pentoses as the sole carbon source, but it has ptsHI genes encoding the two general proteins of the PTS: enzyme I (EI) and the histidine phosphocarrier (HPr). In this work, we describe the biophysical and structural properties of HPr from B. sphaericus, HPrbs, and its affinity towards EI of other species to find out whether there is inter-species binding. Conversely to what happens to other members of the HPr family, HPrbs forms several self-associated species. The conformational stability of the protein is low, and it unfolds irreversibly during heating. The protein binds to the N-terminal domain of EI from Streptomyces coelicolor, EINsc, with a higher affinity than that of the natural partner of EINsc, HPrsc. Modelling of the complex between EINsc and HPrbs suggests that binding occurs similarly to that observed in other HPr species. We discuss the functional implications of the oligomeric states of HPrbs for the glycolytic activity of B. sphaericus, as well as a strategy to inhibit binding between HPrsc and EINsc

    Detection of Quantitative Trait Loci Controlling the Content of Phenolic Compounds in an Asian Plum (Prunus salicina L.) F1 Population

    Get PDF
    Consumption of fresh fruit is known to protect against non-communicable diseases due to the fruit's content in compounds with an antioxidant capacity, among them is polyphenols. Asian plums (Prunus salicina L.) accumulate more than 40 phenolic compounds, with a remarkable diversity in their profiles, depending on the variety and environmental conditions. Although candidate genes have been indicated to control this trait, the loci controlling its phenotypic variation have not yet been defined in this species. The aim of this work was to identify the quantitative trait Loci (QTL) controlling the phenolic compounds content in the Asian plum skin and flesh. Using UHPLC-DAD-Orbitrap-MS, we determined that cyanidin-3-glucoside and cyanidin-3-rutinoside are the main anthocyanins in Asian plums. Other anthocyanins found to a lesser extent were tentatively identified as cyanidin bound to different sugar and procyanidin moieties. Then we phenotyped fruits of 92 and 80 F1 seedlings from the cross (98 Ang) for two harvest seasons. We used HPLC-DAD to quantify single anthocyanin and spectrophotometric techniques to determine the total content of phenols, flavonoids, procyanidins, and antioxidant activity (DPPH and FRAP). To determine the phenotype-genotype association of phenolic compounds content, phenotypic values (adjusted by linear mixed-effects models), genotypic data and linkage maps were analyzed with the multiple QTL model (MQM) approach. We found a total of 21 significant trait-marker associations: 13 QTLs segregating from “98.99” and 8 QTLs from “Angeleno.” From these associations, 8 corresponded to phenolic compound content in the flesh and 13 in the skin. Phenotype variance was explained by the detected loci, ranging from 12.4 to 27.1%. The identified loci are related to the content of cyanidin-3-glucoside (LG4), cyanidin-3-rutinoside (LG4), total flavonoids and procyanidins (LG5 and LG8), and minor anthocyanin compounds (LG3 and LG4). These results will help improve the efficiency of breeding programs for the generation of Asian plum varieties with high phenolic compound content.This work has been funded by the National Agency of Research and Development (ANID), Chile: Fondecyt start into Research No. 11150662, Fondecyt Regular No. 1191446, and FONDEF Project IT17I0069 Sweet Pekeetah: un modelo tecnológico-comercial para una nueva variedad chilena de fruta; BB and CS-A were supported by BECAS DE DOCTORADO NACIONAL/2020 No. 21200330 and 21191605, respectively. The work of JS was supported by the Ministry of Science and Innovation of Spain through Juan de la Cierva incorporation contract (IJC2018-036623-I

    An Upgraded, Highly Saturated Linkage Map of Japanese Plum (Prunus salicina Lindl.), and Identification of a New Major Locus Controlling the Flavan-3-ol Composition in Fruits

    Get PDF
    Japanese plum fruits are rich in phenolic compounds, such as anthocyanins and flavan-3-ols, whose contents vary significantly among cultivars. Catechin (C) and epicatechin (EC) are flavan-3-ol monomers described in the fruits of this species and are associated with bitterness, astringency, antioxidant capacity, and susceptibility to enzymatic mesocarp browning. In this study, we aimed to identify quantitative trait loci (QTL) associated with the content of flavan-3-ol in Japanese plum fruits. We evaluated the content of C and EC in the mesocarp and exocarp of samples from 79 and 64 seedlings of an F1 progeny () in the first and second seasons, respectively. We also constructed improved versions of linkage maps from ‘98–99’ and ‘Angeleno,’ presently called single-nucleotide polymorphisms (SNPs) after mapping the already available GBS reads to Prunus salicina Lindl. cv. ‘Sanyueli’ v2.0 reference genome. These data allowed for describing a cluster of QTLs in the cultivar, ‘Angeleno,’ associated with the flavan-3-ol composition of mesocarp and exocarp, which explain up to 100% of the C/EC ratio. Additionally, we developed a C/EC metabolic marker, which was mapped between the markers with the highest log of odds (LOD) scores detected by the QTL analysis. The C/EC locus was located in the LG1, at an interval spanning 0.70 cM at 108.30–108.90 cM. Our results suggest the presence of a novel major gene controlling the preferential synthesis of C or EC in the Japanese plum fruits. This study is a significant advance in understanding the regulation of synthesizing compounds associated with fruit quality, postharvest, and human health promotion.This study has been funded by the National Agency of Research and Development (ANID)/the Scholarship Program/BECAS DE DOCTORADO NACIONAL/2020 – 21200330; Fondecyt Regular No. 1191446; Fondecyt Iniciación No. 11150662; Fondecyt Regular No. 1200718; FONDEF Project IT17I0069 Sweet Pekeetah: “un modelo tecnológico- comercial para una nueva variedad chilena de fruta”. JS was supported by the Ministry of Science and Innovation of Spain through the Juan de la Cierva incorporation contract (IJC2018-036623-I

    Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current upwelling system)

    Get PDF
    The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m-2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m-2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H', Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-mzone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system

    A crowdsourcing database for the copy-number variation of the spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.This work is supported by Grants PID2020-117979RB-I00 from the Spanish Ministry of Science and Innovation; by the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019, IMP/00009 and PI20/01305), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”)

    CSVS, a crowdsourcing database of the Spanish population genetic variability

    Get PDF
    The knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes. Sequences have been grouped by ICD10 upper categories. A web interface allows querying the database removing one or more ICD10 categories. In this way, aggregated counts of allele frequencies of the pseudo-control Spanish population can be obtained for diseases belonging to the category removed. Interestingly, in addition to pseudo-control studies, some population studies can be made, as, for example, prevalence of pharmacogenomic variants, etc. In addition, this genomic data has been used to define the first Spanish Genome Reference Panel (SGRP1.0) for imputation. This is the first local repository of variability entirely produced by a crowdsourcing effort and constitutes an example for future initiatives to characterize local variabilityworldwide. CSVS is also part of the GA4GH Beacon network.Spanish Ministry of Economy and Competitiveness SAF2017-88908-R PT17/0009/0006 PI19/00321 CIBERER ACCI-06/07/0036 PI14-948 PI171659Regional Government of Madrid, RAREGenomicsCM B2017/BMD3721 B2017/BMD-3721European Union (EU)European Union (EU) 676559University Chair UAM-IIS-FJD of Genomic MedicineRamon Areces Foundatio
    corecore