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ABSTRACT

The knowledge of the genetic variability of the lo-
cal population is of utmost importance in person-
alized medicine and has been revealed as a crit-

ical factor for the discovery of new disease vari-
ants. Here, we present the Collaborative Spanish
Variability Server (CSVS), which currently contains
more than 2000 genomes and exomes of unrelated
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Spanish individuals. This database has been gen-
erated in a collaborative crowdsourcing effort col-
lecting sequencing data produced by local genomic
projects and for other purposes. Sequences have
been grouped by ICD10 upper categories. A web in-
terface allows querying the database removing one
or more ICD10 categories. In this way, aggregated
counts of allele frequencies of the pseudo-control
Spanish population can be obtained for diseases be-
longing to the category removed. Interestingly, in ad-
dition to pseudo-control studies, some population
studies can be made, as, for example, prevalence of
pharmacogenomic variants, etc. In addition, this ge-
nomic data has been used to define the first Spanish
Genome Reference Panel (SGRP1.0) for imputation.
This is the first local repository of variability entirely
produced by a crowdsourcing effort and constitutes
an example for future initiatives to characterize local
variability worldwide. CSVS is also part of the GA4GH
Beacon network.

CSVS can be accessed at: http://csvs.babelomics.
org/.

INTRODUCTION

Sequencing technologies have experienced an unprece-
dented development during the last decade (1) that resulted
in different international collaborative projects (2–4) which
contributed to an extraordinary increase in the knowledge
of the mutational spectrum of diseases. This generation of
knowledge has been especially significant in diseases with
high morbidity and mortality, caused by highly penetrant
(typically protein-coding) variants (5,6). In fact, more than
4500 monogenic diseases can nowadays be directly diag-
nosed by personalized genomics (7), a possibility that might
soon be extended to the whole spectrum of rare diseases
with a genetic background (8). Among the strategies used
to discover new disease variants, especially in monogenic
disorders, frequency-based filtering has demonstrated to be
a very useful tool (9). The rationale is as follows: variants
that are relatively common in a control population (com-
mon variation) are likely benign (10), while rare variants
(especially if they have functional consequences) found in
multiple affected cases but absent in the control population
are likely to cause disease (11–13). These filters search for
genes or variants present in all (or most) affected individuals
but in none (or very few) of the unaffected control individ-
uals. Therefore, it seems clear that the availability of healthy
controls is a decisive factor for the progress of discovery of
new disease determinants.

From an historical perspective, the 1000 Genomes Project
produced the first comprehensive catalogue of common hu-
man genetic variation (14). However, it is known that low
frequency (with minor allele frequencies, MAF, under 5%)
and rare (MAF under 0.5%) variants, typically population-
specific (15), are poorly represented in such catalogue (14).
Actually, recent studies have described a remarkable local
component (16–18) and a high stratification level (19,20) in
many rare variants with uncertain functional consequences.

As a consequence of this, the risk of many diseases differs in
distinct human populations according to their genetic back-
grounds (21,22). In fact, the knowledge of the genetic vari-
ability of the local population has been revealed as a crit-
ical factor for the discovery of new disease variants (23).
All these observations highlight the need for population-
specific catalogues of genetic variation (24). However, only
a few initiatives to study genetic variation at the popula-
tion level have been carried out to date, which include a
whole-genome sequence (WGS) study of 100 Malays (25),
the Genome of the Netherlands, with low-resolution (∼13×)
WGS data of 250 trio-families from across the entire coun-
try (15), the French-Canadians study of 109 exomes (26),
the Medical Genome Project that produced a catalog of the
healthy Spanish population with almost 270 exomes (23),
the 3000 Finnish genomes (27) and the Icelandic population
study of medium resolution (∼20×) WGS of 2636 individu-
als (28) or the high resolution (>30×) WGS of 1070 healthy
Japanese individuals (29) and the recent genetic analysis of
the Iranian population (30).

In spite of its recognized usefulness, large-scale sequenc-
ing projects of cohorts of local ‘healthy’ populations require
expensive consortium-based projects to obtain a represen-
tative sample of the population targeted. Unfortunately,
funding bodies that are prone to support research on dis-
eases, tend to be, however, reluctant to fund projects that
involve systematic sequencing of healthy individuals. In this
scenario, a crowdsourcing strategy can provide a feasible
alternative to traditional working schemas by organizing
consortia that collect data from different groups that ulti-
mately are collectively benefited of the sample size cooper-
atively obtained. Crowdsourcing is becoming a very popu-
lar strategy in biomedicine (31) and can be defined as ‘the
process of getting services, information, labor or ideas by
outsourcing through an open call, especially through the
Internet’ (32). Recently some examples of crowdsourced re-
search have demonstrated an increased accuracy in predict-
ing breast cancer survival (33), response to drugs (34) or
to toxic compounds (35) from both, clinical and genomic
data, and show how ‘crowdsourced data science challenges
can achieve in months what would take years through con-
ventional research approaches’ (36).

MATERIALS AND METHODS

Subjects

The database contains detailed allelic frequencies cor-
responding to The MGP population, sequenced in the
context of the Medical Genome Project (http://www.
clinbioinfosspa.es/content/medical-genome-project),
which includes 267 healthy, unrelated samples of Spanish
origin (EGA, accession: EGAS00001000938), other healthy
controls, patients of different diseases, accompanied in
some cases of unrelated phenotypically healthy carriers.
The sequences were contributed by different consortiums
and projects, including groups from the Spanish Network
for Research in Rare Diseases, CIBERER, results from
the EnoD, (Undiagnosed Rare Diseases programme; https:
//www.ciberer.es/en/transversal-programmes/scientific-
projects/undiagnosed-rare-diseases-programme-enod),
the Project Genome 1000 Navarra (NAGEN 1000;
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(https://www.nagen1000navarra.es/en), The RareGenomics
(https://www.rare-genomics.com/) from Madrid, and other
research groups and initiatives across Spain (37,38), which
currently sum up a total of 2027 genomic and exomic
sequences of unrelated Spanish individuals.

Testing sample locality

Ensuring the Spanish locality of the samples uploaded in
the CSVS is key for the project. Here, we specifically de-
veloped a methodology to double-check the origin of each
sample. Sequences belonging to different populations in
the 1000 genomes project (14) were used to train a Ma-
chine Learning based decision model to discriminate Span-
ish samples from the rest of populations. Firstly, SNPs cor-
responding to the genomic regions shared by all the sam-
ples having a MAF > 0.01 were selected. Then, individual
ancestry in 1000 genomes was estimated for 26 subpopu-
lations using ADMIXTURE (39). Therefore, each individ-
ual is described by a vector of 26 features that correspond
to the probabilities of belonging to any of the 26 subpopu-
lations of 1000 genomes. Then, a machine learning binary
classificatory was built using a well-known variant of the
gradient boosting machine: extreme gradient boosting (XG-
Boost) (40) (see Supplementary Methods for details).

Testing sample kinship and outlier sample detection

A test to determine undesired samples based on their per-
centage of novel variants introduced in the database, either
by excess (potential noisy sample) or by defect (close rel-
ative or individual already in the database), has also been
used to populate the CSVS database. A leave-one-out cross-
validation (LOOCV) strategy was to build a distribution of
percentages of variants contributed by any single sample to
the pool of variants present in the rest of the database. Sam-
ples were considered potential outliers if overpass 1.5 times
the interquartile range from first and third quartile in the
distribution obtained (see Supplementary Methods for de-
tails).

Construction of the reference imputation panel

Two alternative reference panels were created for compar-
ison purposes that include the CSVS WGS variant panel
composed of 228 samples plus: (i) the entire 1000G refer-
ence panel (CSVS+1000G) and (ii) exclusively the Span-
ish population (IBS subpopulation) contained in the 1000G
panel (CSVS+IBS), using the Minimac3 imputation tool
(41). The four longest chromosomes (chromosome 1–4)
were used to estimate the correlation between real and im-
puted genotypes (r2 parameter) and assess the imputation
accuracy (see Supplementary Methods for details).

RESULTS

The CSVS database

Figure 1A shows how data contributed by different ge-
nomic projects undergo different quality control steps, in-
cluding an artifact and kinship detection tests and local-
ity test, described above. Then the original VCFs are ag-
gregated as counts of variants, binned by ICD10 (https:

//www.icd10data.com/) disease categories, and inserted in
the CSVS database.

The CSVS interface

The initial screen (Figure 1B) requires the accep-
tance of the ‘Terms and conditions for the use of the
CSVS database’ (http://csvs.babelomics.org/downloads/
CSVSTermsAndConditions use.pdf) before starting any
operation. Once accepted, different options can be used.

The search option. This is the main option and allows
querying the CSVS database. In the left panel (Figure 1C)
queries can be done by gene symbol or by chromosomal
regions. Also, one or several disease categories can be ex-
cluded, and variants can be highlighted using different types
of scores (e.g. SIFT (42), Polyphen (43), CADD (44), Gerp
(45)) as well as Sequence Ontology terms for the variation
consequences.

The results of the query (Figure 1D) include a list of the
positions for which variation has been found in the Span-
ish population along with complementary data as: chromo-
some, position, reference allele and alternative allele, allelic
frequencies in the Spanish population, allelic frequencies in
the 1000 genomes populations and in the EVS populations,
impact and conservation indexes (SIFT, Polyphen, CADD,
Gerp), the wort of the consequence types assigned to the
mutation and the phenotypes, corresponding to known clin-
ical information for the variants, extracted from ClinVar
(46), COSMIC (47) and are annotated interactively on each
query using the CellBase (48) webservices. Also a visualiza-
tion of the variant in the genomic context is provided, based
on the Genome Maps browser (49). Additionally, some ex-
tra detailed information can be found on the population fre-
quencies observed for the variant, the phenotype or the ef-
fect.

Contact request. An interesting option is the Contact re-
quest button, offered for any variant in the query results
panel, which is a local equivalent of a Matchmaker ex-
change service (50), extensively used to contact the original
contributor of a specific sequence.

Saturation plots. Saturation plots (Figure 1F) provide an
interesting perspective on the general conservation of the
gene studied and, consequently on the possibilities of dis-
covering new variants into it. Genes highly constrained to
change will saturate soon and a relatively low number of
individuals will capture most of the tolerated mutation the
gene can handle, while unconstrained genes will present a
still growing slope, meaning that there are still many vari-
ants that can potentially be discovered. Discovering a new
variant in a saturated gene (constrained to change) can be
more relevant than the same finding in a non-saturated gene
(unconstrained). Saturation has a clear functional compo-
nent, that can easily be revealed by enrichment analysis
of the genes ranked by saturation. Thus, when genes are
ranked by their relative saturation, enrichment analysis us-
ing enrichR (51) shows how highly saturated genes (con-
strained) are enriched in functional terms related to meio-
sis, cell signaling, proliferation and homeostasis, while the
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Figure 1. (A) data is contributed by different genomic projects and pass through different quality control steps including an artefact and kinship test
(that detects upper outliers, with an unexpected high ratio of private variants, most likely errors, and lower outliers, that are duplicates or close kinship
individuals) and locality test before being inserted in the database. (B) Initial CSVS page. (C) Query panel in the Search option. (D) List of variants found
in the Spanish population within the selected region along with complementary information on impact, conservation, other’s population frequencies and
phenotype. (E) genomic browser that displays the selected variant in its genomic context. (F) Saturation plot. (G) Updated contents of the database.

less saturated (unconstrained) are more related to sensory
perception, immune response and similar functionalities
(see Supplementary Results and Supplementary Figure S1).
Figure 2 depicts how genes with high and low saturation are
distributed along the chromosomes. Interestingly, sex chro-
mosomes seem to be enriched in low saturated genes.

Downloads and statistics. Partial or total downloads of the
aggregated data are possible upon the reception of the cor-
responding data download agreement duly signed.

The Stats option provides an updated view of the content
of the CSVS database.

The Spanish Genome Reference Panel (SGRP1.0)

Supplementary Figure S2 shows the accuracy of the two ref-
erence panels derived for imputation in the Spanish popula-
tion. Both reference panels including the CSVS WGS refer-
ence outperformed the 1000 genomes reference. The impu-
tation accuracy increases when variants in rare sites were in-
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Figure 2. Circos plot showing the different genes with high saturation (orange) and low saturation (green) along the chromosomes, which were significantly
enriched in functional terms in Supplementary Figure S1.

cluded (MAF > 0.005). The most realistic imputation panel
includes CSVS and the IBS population of the 1000 genomes.

Variants of pharmacogenomic interest

Interindividual genetic variability in genes involved in drug-
metabolizing enzymes and transporters have been linked
to differences in the efficacy and toxicity of many medica-
tions: Moreover, genetic differences between human popu-
lations are becoming increasingly recognized as important
factors accounting for interindividual variations in drug re-

sponsiveness (52,53). Approximately one-fifth of new drugs
approved in the past years demonstrated differences in re-
sponse across ethnic groups, leading to population-specific
prescribing recommendations (54). In spite of the consen-
sus about the existence of a relative homogeneity within
European populations, population-specific differences in
the Spanish population were recently reported (23). Using
the individuals of the CSVS repository, we addressed how
population-specific differences in those genes involved in
drug Absorption, Distribution, Metabolism, Excretion and
Toxicity (ADMET) could affect in the rates and risks for
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drug inefficacy and/or adverse drug reactions in the Span-
ish population. We estimated the allele frequencies of a to-
tal of 142 pharmacogenetic variants described in the Phar-
mGKB database (55) with pharmacogenetic clinical recom-
mendations (PharmGKB variants level 1A and 1B) and a
total of 40 of these were found to be polymorphic in the
CSVS. When compared with the allele frequencies calcu-
lated from genetic data of 30 000 European non-Finnish
individuals (gnomAD (56)), no relevant frequency differ-
ences between the general European population and the
Spanish population were observed, being the most differ-
ent rs2228001 (level 1B) in XPC gene, rs2108622 (level 1A)
in CYP4F2 gene and rs3892097 (level 1A) In CYP2D6 gene
(P-value ≤ 1 × 10−10). Regarding the non-polymorphic
variants, we observed that all of them are low-frequency
variants (lower than 0.00065) and we do not expect to find a
heterozygous individual due to the sample size in our repos-
itory (Supplementary Table S1).

Apart from the genetic variants already recommended to
be implemented in the clinical setting, it was found that ge-
netic variability with functional impact was governed by
few high-frequency variants for some genes, but the func-
tionality of the majority of pharmacogenes is dominated
by rare genetic variants (57). In addition, local variabil-
ity in these ADMET genes could also be very relevant
for explaining a substantial part of the unexplained inter-
individual differences in drug response and toxicities at
the population-specific level, so that it is mandatory to
have available population-specific catalogs of these pharma-
variants (mainly rare) to explore their contribution to pre-
dictions of drug response. To examine this, we studied the
variability of the Spanish population captured by our repos-
itory in a total of 421 well-known pharmacogenes involved
in drug pharmacokinetics and/or drug response (Supple-
mentary Table S2). High-impact variants within those phar-
macogenes were defined according to the Variant Effect
Predictor (58) as those having having the following con-
sequence types: frameshift, splice acceptor, splice donor,
start lost, stop gained, stop lost, transcript ablation and
transcript amplification. Additionally, deleterious missense
variants categorized as deleterious by CONDEL (59) or
having a LoFtool score (60) lower than the first quartile cor-
responding to the most intolerant variants.

As before, the same comparison with the correspond-
ing European non-Finnish variants rendered a total of 318
high impact variants and 235 likely deleterious missense sin-
gle nucleotide variants in the pharmacogenes studied. In-
terestingly, 18 (5.6%) high impact variants and 18 (7.6%)
missense variants identified were present in our Spanish
population while no heterozygotes were observed in these
positions across ∼30 000 healthy individuals of the Euro-
pean non-Finnish population. Also, a non-negligible per-
centage of private variation was observed in these genes
encoding proteins involved in drug metabolism, transport,
and response, and this information can be used to pin-
point relevant private genetic variants to be included in the
design of population-specific pharmacogenetic genotyping
arrays to be utilized in the implementation of pharmaco-
genetic diagnostics in the clinical setting (Supplementary
Table S3).

CSVS Beacon

Since 2017, CSVS makes its genomic information discover-
able through the GA4GH Beacon network (https://beacon-
network.org/). In order to improve the performance of the
CSVS Beacon API we set up an SQLite database specific for
this purpose. Although CSVS stores data in 1-base it can re-
spond to queries in both 1-base or 0-base (Beacon requests
data in 0-base). A form to directly make Bacon-style queries
is also available (http://ucscbeacon.clinbioinfosspa.es/).

DISCUSSION

The genetic variability of the local population is recognized
as one of the most relevant factors in the discovery of new
disease variants, especially in mendelian diseases (6,8,23).
However, genomic data of healthy individuals belonging
to the local population of interest are often scarce when
not unavailable. The CSVS provides an original solution to
this problem. The CSVS is a continuously growing resource
that collects genomic or exomic sequences of the Span-
ish local population, no matter whether these come from
healthy or diseased individuals. The main objective is us-
ing the repository as a pseudo-control population for find-
ing new disease-causing variants and genes, with the idea
that ‘disease A is a healthy control for disease B’. Despite
gene pleiotropy cannot be completely ruled out, data are
binned at higher disease ICD10 categories, where this gene
property can be considered negligible. Actually, resources
like Disgenet (61) can be used in case of doubt, and will
be incorporated to automatically exclude the proper disease
categories, in future CSVS versions. Since the collection of
population-specific genomic data from individuals with dif-
ferent diseases are easier to collect than those from healthy
donors, CSVS provides an example for the construction of
population-specific pseudo-control repositories by means
of crowdsourcing (31). Moreover, the CSVS Beacon and the
Contact request option makes of CSVS a tool with high po-
tential of discoverability. Thus, CSVS sets the ground and it
is an example for future federated European infrastructures
(62).

DATA AVAILABILITY

CSVS is an open resource available at http://csvs.
babelomics.org/.

The CSVS code, as well as the code of the different tests
used is available in the corresponding github repository:
https://github.com/babelomics/CSVS.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Espinos, Roser González, Daniel Grinberg, Encarnación

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/D

1/D
1130/5912819 by U

niversidad de G
ranada - Biblioteca user on 05 February 2021

https://beacon-network.org/
http://ucscbeacon.clinbioinfosspa.es/
http://csvs.babelomics.org/
https://github.com/babelomics/CSVS
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa794#supplementary-data


D1136 Nucleic Acids Research, 2021, Vol. 49, Database issue

Guillén, Pablo Lapunzina, Esther Lopez, Ramón Martı́,
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Rueda,A. (2016) 267 Spanish exomes reveal population-specific
differences in disease-related genetic variation. Mol. Biol. Evol., 33,
1205–1218.

24. Bustamante,C.D., Burchard,E.G. and De la Vega,F.M. (2011)
Genomics for the world. Nature, 475, 163–165.

25. Wong,L.P., Ong,R.T., Poh,W.T., Liu,X., Chen,P., Li,R., Lam,K.K.,
Pillai,N.E., Sim,K.S., Xu,H. et al. (2013) Deep whole-genome
sequencing of 100 southeast Asian Malays. Am. J. Hum. Genet., 92,
52–66.

26. Casals,F., Hodgkinson,A., Hussin,J., Idaghdour,Y., Bruat,V., de
Maillard,T., Grenier,J.C., Gbeha,E., Hamdan,F.F., Girard,S. et al.
(2013) Whole-exome sequencing reveals a rapid change in the
frequency of rare functional variants in a founding population of
humans. PLos Genet., 9, e1003815.

27. Lim,E.T., Wurtz,P., Havulinna,A.S., Palta,P., Tukiainen,T.,
Rehnstrom,K., Esko,T., Magi,R., Inouye,M., Lappalainen,T. et al.
(2014) Distribution and medical impact of loss-of-function variants
in the Finnish founder population. PLoS Genet., 10, e1004494.

28. Gudbjartsson,D.F., Helgason,H., Gudjonsson,S.A., Zink,F.,
Oddson,A., Gylfason,A., Besenbacher,S., Magnusson,G.,
Halldorsson,B.V., Hjartarson,E. et al. (2015) Large-scale
whole-genome sequencing of the Icelandic population. Nat. Genet.,
47, 435–444.

29. Nagasaki,M., Yasuda,J., Katsuoka,F., Nariai,N., Kojima,K.,
Kawai,Y., Yamaguchi-Kabata,Y., Yokozawa,J., Danjoh,I., Saito,S.
et al. (2015) Rare variant discovery by deep whole-genome
sequencing of 1,070 Japanese individuals. Nat. Commun., 6, 8018.

30. Fattahi,Z., Beheshtian,M., Mohseni,M., Poustchi,H., Sellars,E.,
Nezhadi,S.H., Amini,A., Arzhangi,S., Jalalvand,K. and Jamali,P.
(2019) Iranome: a catalog of genomic variations in the Iranian
population. Hum. Mutat., 40, 1968–1984.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/D

1/D
1130/5912819 by U

niversidad de G
ranada - Biblioteca user on 05 February 2021



Nucleic Acids Research, 2021, Vol. 49, Database issue D1137

31. Khare,R., Good,B.M., Leaman,R., Su,A.I. and Lu,Z. (2015)
Crowdsourcing in biomedicine: challenges and opportunities. Brief.
Bioinform., 17, 23–32.

32. Estellés-Arolas,E. and González-Ladrón-de-Guevara,F. (2012)
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