449 research outputs found

    Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

    Get PDF
    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios

    Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas in North America

    Get PDF
    Human activities threaten the effectiveness of protected areas (PAs) in achieving their conservation goals across the globe. In this study, we contrast the influence of human and macro-environmental factors driving fire activity inside and outside PAs. Using area burned between 1984 and 2014 for 11 ecoregions in Canada and the United States, we built and compared statistical models of fire likelihood using the MaxEnt software and a set of 11 key anthropogenic, climatic, and physical variables. Overall, the full model (i.e. including all variables) performed better (adjusted area under the curve ranging from 0.71 to 0.95 for individual ecoregions) than the model that excluded anthropogenic variables. Both model types (with and without anthropogenic variables) generally performed better inside than outside the PAs. Climatic variables were usually of foremost importance in explaining fire activity inside and outside PAs, with anthropogenic variables being the second most important predictors, even inside PAs. While the individual contributions of anthropogenic variables indicate that fire activity decreased as of function of increasing human footprint, the anthropogenic effects were often substantially greater than those of physical features and were comparable to or even greater than climatic effects in some densely developed ecoregions, both outside and within PAs (e.g. Mediterranean California, Eastern Temperate Forest, and Tropical Wet Forests). Together, these results show the pervasive impact of humans on fire regimes inside PAs, as well as outside PAs. Given the increasing attractiveness of PAs, the implications for adaptive fire management beyond the concept of naturalness in the PAs are discussed. Our assessment of human-altered fire activity could serve as an indicator of human pressure in PAs; however, we suggest that further analysis is needed to understand specific interactions among fire, human pressures, and the environmental conditions at the scale of PAs

    Wildland fire deficit and surplus in the western United States, 1984–2012

    Get PDF
    Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a ‘‘fire deficit’’ or ‘‘fire surplus’’, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012.We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that largescale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems

    Wildland fire deficit and surplus in the western United States, 1984–2012

    Get PDF
    Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a ‘‘fire deficit’’ or ‘‘fire surplus’’, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012.We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that largescale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems

    Wildland fire deficit and surplus in the western United States, 1984-2012

    Get PDF
    Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a fire deficit or fire surplus, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that large scale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems

    Latent fingermark imaging by single-metal deposition of gold nanoparticles and surface enhanced Raman spectroscopy

    Get PDF
    In forensic science, there is a high demand for a technique that allows the revelation of fingermarks invisible to the naked eye as well as the chemical information they contain. Here, we present a feasibility study consisting of using both the luminescence enhanced by surface plasmon of gold nanoparticles, and the surface enhanced Raman spectroscopy signal of fingermark chemical components to image latent fingermarks. A latent fingermark deposited on a transparent glass substrate was visually revealed using single-metal deposition employing gold nanoparticles. The resulting enhanced luminescence was monitored over a developed area of the latent fingermark, displaying light regions of 200-400 ÎŒm, corresponding to the fingermark ridges. The Raman signal of the fingermark's chemical components was enhanced into a measurable signal. Imaging those Raman peaks revealed the ridges pattern, attesting to the potential of our method. Since SMD is an end-of-sequence revelation technique for which further enhancement techniques do not exist, this work aims at demonstrating the feasibility of the technique in order to apply it on different systems, able to illuminate a complete surface of a few cm, and thus capable of both detecting contaminants in LFM and imaging features of the size of a complete LFM

    Discovering RNA-Protein Interactome by Using Chemical Context Profiling of the RNA-Protein Interface

    Get PDF
    SummaryRNA-protein (RNP) interactions generally are required for RNA function. At least 5% of human genes code for RNA-binding proteins. Whereas many approaches can identify the RNA partners for a specific protein, finding the protein partners for a specific RNA is difficult. We present a machine-learning method that scores a protein’s binding potential for an RNA structure by utilizing the chemical context profiles of the interface from known RNP structures. Our approach is applicable even when only a single RNP structure is available. We examined 801 mammalian proteins and find that 37 (4.6%) potentially bind transfer RNA (tRNA). Most are enzymes involved in cellular processes unrelated to translation and were not known to interact with RNA. We experimentally tested six positive and three negative predictions for tRNA binding in vivo, and all nine predictions were correct. Our computational approach provides a powerful complement to experiments in discovering new RNPs

    Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models

    Get PDF
    Motivation: The recent development of methods for modeling RNA 3D structures using coarse-grain approaches creates a need to bridge low- and high-resolution modeling methods. Although they contain topological information, coarse-grain models lack atomic detail, which limits their utility for some applications

    Contributions of Fire Refugia to Resilient Ponderosa Pine and Dry Mixed‐Conifer Forest Landscapes

    Get PDF
    Altered fire regimes can drive major and enduring compositional shifts or losses of forest ecosystems. In western North America, ponderosa pine and dry mixed‐conifer forest types appear increasingly vulnerable to uncharacteristically extensive, high‐severity wildfire. However, unburned or only lightly impacted forest stands that persist within burn mosaics—termed fire refugia—may serve as tree seed sources and promote landscape recovery. We sampled tree regeneration along gradients of fire refugia proximity and density at 686 sites within the perimeters of 12 large wildfires that occurred between 2000 and 2005 in the interior western United States. We used generalized linear mixed‐effects models to elucidate statistical relationships between tree regeneration and refugia pattern, including a new metric that incorporates patch proximity and proportional abundance. These relationships were then used to develop a spatially explicit landscape simulation model. We found that regeneration by ponderosa pine and obligate‐seeding mixed‐conifer tree species assemblages was strongly and positively predicted by refugia proximity and density. Simulation models revealed that for any given proportion of the landscape occupied by refugia, small patches produced greater landscape recovery than large patches. These results highlight the disproportionate importance of small, isolated islands of surviving trees, which may not be detectable with coarse‐scale satellite imagery. Findings also illustrate the interplay between patch‐scale resistance and landscape‐scale resilience: Disturbance‐resistant settings (fire refugia) can entrain resilience (forest regeneration) across the burn matrix. Implications and applications for land managers and conservation practitioners include strategies for the promotion and maintenance of fire refugia as components of resilient forest landscapes

    Soil moisture monitoring in a temperate peatland using multi-sensor remote sensing and linear mixed effects

    Get PDF
    The purpose of this research was to use empirical models to monitor temporal dynamics of soil moisture in a peatland using remotely sensed imagery, and to determine the predictive accuracy of the approach on dates outside the time series through statistically independent validation. A time series of seven Moderate Resolution Imaging Spectroradiometer (MODIS) and Synthetic Aperture Radar (SAR) images were collected along w
    • 

    corecore