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SUMMARY

RNA-protein (RNP) interactions generally are
required for RNA function. At least 5% of human
genes code for RNA-binding proteins. Whereas
many approaches can identify the RNA partners for
a specific protein, finding the protein partners for a
specific RNA is difficult. We present a machine-
learning method that scores a protein’s binding po-
tential for an RNA structure by utilizing the chemical
context profiles of the interface from known RNP
structures. Our approach is applicable even when
only a single RNP structure is available. We exam-
ined 801 mammalian proteins and find that 37
(4.6%) potentially bind transfer RNA (tRNA). Most
are enzymes involved in cellular processes unrelated
to translation and were not known to interact with
RNA.We experimentally tested six positive and three
negative predictions for tRNA binding in vivo, and all
nine predictions were correct. Our computational
approach provides a powerful complement to exper-
iments in discovering new RNPs.

INTRODUCTION

Over 105 RNAs are present in a mammalian cell and essentially

all function through interaction with proteins. Recent studies

indicate that a human cell containsmore than 103mRNA-binding

proteins; over 35% of these were previously not known to

interact with any RNA (Baltz et al., 2012; Castello et al., 2012),

suggesting that many RNA-protein (RNP) complexes remain to

be identified. Experimental approaches such as CLIP-seq and

PAR-clip apply high-throughput sequencing techniques and

readily identify RNA partners for a given protein on the genomic

scale in cells (Hafner et al., 2010; Scheibe et al., 2012; Zhang and

Darnell, 2011; Zhang et al., 2010).

Despite these advances, identification of protein partners

that bind to a specific RNA remains challenging. The low abun-
C

dance of many cellular RNAs often prohibits identification of

bound proteins at the genomic scale. RNP interactions in cells

can be transient because a given RNA can exchange protein

partners during its maturation, function, and degradation. Differ-

ential expression of proteins and RNAs in distinct cell types and

physiological states also contribute in making the determination

of RNP interactome difficult on the basis of experimental ap-

proaches alone.

To complement experimental methods, computational ap-

proaches are highly desirable for predicting the RNP interactome

(Bellucci et al., 2011; Li et al., 2012a; Pons et al., 2010; Puton

et al., 2012; Setny and Zacharias, 2011; Tuszynska and Bujnicki,

2011; Zhao et al., 2011; Zheng et al., 2007). No current method,

however, can provide accurate genome-wide predictions of

RNPs without a priori geometrical restraints or assumptions on

the protein motifs that contact the RNA. Nevertheless, recent

progress including an expanded structure database (Chruszcz

et al., 2010), large-scale computational resources (Wilde et al.,

2011), and structural prediction for proteins (Moult et al., 2011)

and RNAs (Cruz et al., 2012) have led to the development of

docking and scoring methods as the first stage to uncover

RNPs on the genomic scale. Numerous studies indicate that

RNP interactions involve electrostatics (Bahadur et al., 2008;

Chen and Lim, 2008; Polozov et al., 2006; Shazman and Man-

del-Gutfreund, 2008; Tworowski et al., 2005), specific amino

acid-nucleotide partners such as overrepresentation of arginine

(Kim et al., 2006; Pérez-Cano and Fernández-Recio, 2010), and

other factors (Draper, 1999; Fulle and Gohlke, 2010; Lunde et al.,

2007). Almost all RNP docking predictions utilize statistical po-

tentials incorporating either contact- or distance-based statis-

tics found in solved RNPs and used thereafter as scoring

function.

Here, we introduce a machine-learning-based approach to

predict unknown RNP complexes followed by experimental vali-

dation (Figure 1A). We first identify transfer RNA (tRNA)-binding

proteins because tRNA may have an extensive yet uncharacter-

ized protein interaction network, and we can train using many

solved transfer RNP (tRNP) structures. We also demonstrate

the feasibility for non-tRNAmotifs where only a single RNP struc-

ture containing the motif is available. We computationally
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Figure 1. Performance of Scoring Functions

(A) Flow diagram of this work. We first analyze RNPs using amachine-learning, CCP-based approach. We then perform PDB-wide prediction of tRNP complexes

followed by experimental validations in vivo and in vitro.

(B) A prototypical tRNAPhe can mimic many cognate tRNAs in the 28 known tRNPs. After superposition, 80% of the phosphate groups of tRNAPhe is within 6 Å of

the corresponding phosphate groups of the cognate RNA.

(C) Docking scores for cognate tRNAs and tRNAPhe correlate with a Pearson’s R value of 0.70.

(D) Four scoring functions are evaluated for their ability to identify native-like interfaces, quantified as the fraction of the top 50 scoring poses also having one of the

100 most native-like interfaces as characterized using CCD: tRNA specific trained on 28 tRNPs (tRNA28; black), general RNP trained on 12 non-tRNPs (tRNA12;

gray), Coulombic terms only (orange), and an all-atom statistical potential (Stat Pot; red).

(E) Distribution of scores with respect to pI of the protein. The 28 tRNPs used in the training are shown as black circles. Randomly selected proteins from the PDB

are shown as blue diamonds for those with pI <7 and as green triangles with pI >7.

(F) Overlap between the scores of the three sets from (E). The blue region highlights the overlap between the known tRNPs with randomly selected proteins with

pI <7. The tick marks at the top of the plots indicate the scores of the known tRNPs, whereas those at the bottom are for the two randomly chosen protein sets.

See also Tables S1, S2, S3, S4, S9, and S12 and Figures S1, S2, S3, S5, and S6.
test �800 mammalian proteins and identify dozens of novel hits

for tRNA binding. We experimentally test six positive and three

negative predictions in mammalian cells and find that all nine

predictions are correct.

RESULTS

Docking Decoys and Representation of RNA and Protein
in the Complex
We selected tRNA to begin our study for a variety of computa-

tional and biological reasons. It is relatively small (�76 nt) and

has a well-defined structure that increases the likelihood of suc-

cess with rigid body-docking methods. Mammalian cells contain

up to 108 tRNA molecules distributed among �50 isoacceptor

families. tRNA is ancient and may have evolved to have an intri-

cate network of protein partners. Finally, the presence of many

tRNP complexes in the PDB (Berman et al., 2007) combined

with contemporary machine-learning techniques enable the

derivation of a scoring function well suited for finding novel

tRNPs.
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The computational approach has three steps: docking,

scoring, and ranking of a known protein structure against the ca-

nonical structure of yeast tRNAPhe (Figure S1A). The computa-

tion starts without any a priori geometrical information, sequence

conservation, or knowledge of RNP-binding motifs. We only use

the coordinates of 28 known tRNPs (Table S1). The program

FTdock (Gabb et al., 1997; Sternberg et al., 2000) is used to

generate up to 105 initial decoys for each tRNP pair in the

learning set. The large number of decoys adds to the difficulty

in selecting native-like poses, thus sharpens the specificity of

our scoring function. Examples of docked complex involve the

protein surface and many tRNA orientations and generate

many near-native docking poses (Figure S1B). We modified

the FTdock program to work on large computer networks by

sharing the loads among many processors. This level of re-

sources is essential for the present study.

To derive a scoring function, a coarse-grained representation

is used to drastically speed up computations while retaining the

primary determinants of tRNP interaction. The Cb carbon is

selected as the interacting center for each amino acid, whereas



a heavy atom in the major groove, the minor groove, and the

phosphate group is selected as the interaction points for each

nucleotide types (Figure S1C). An example for 1 of the 300 inter-

acting pairs (20 amino acids3 15 nt interacting points) is shown

between the alanine and phosphate groups of adenosine (Fig-

ure S1D). The interaction strength is assumed to be constant

within the average extent < e > past the Cb atom for each amino

acid type; beyond this extent, the energy decays as 1/r such that

f(r) = 1/max(3.5Å, r- < e > ).

Chemical Context Profile and Chemical Context
Discrepancy
Our goal is to predict a realistic docking geometry with a chem-

ically reasonable set of contacts. We developed chemical

context profile (CCP), which is a representation of a docking

pose designed to capture the preferences of the contacting

chemical contexts at the docking interface. CCP is a 300-dimen-

sional vector where each dimension is the interaction strength

associated with each of the 300 RNP pairwise interaction types.

The strength is chosen to be inversely proportional to the dis-

tance separating the pair.

We compare the CCP of a predicted complex with that of the

native complex by comparing the magnitudes of their corre-

sponding CCP entries. The vector representation enables this

comparison by calculating the angle between the predicted

and native CCP vectors. This angle is the chemical context

discrepancy (CCD). CCD properly identifies native-like docking

poses for multimeric proteins and is strongly preferred over the

conventional rmsd to guide machine learning in the derivation

of a scoring function. The CCP/CCD paradigm has been shown

to be useful in the studies of DNA-binding potential and DNA-

protein docking sites (Parisien et al., 2012), although substantial

modification is needed to investigate RNP complexes.

CCD quantifies the differences among chemical complemen-

tarity of docked complexes. For instance, among the 105 decoys

of the symmetric dimer 1ASY, the CCD plot features twominima:

one at low rmsd, and another at rmsd values around 60 Å (Fig-

ure S2). In this particular example, the use of rmsd as a measure

of goodness of fit would fool machine learning by providing for

discordant inputs: one is good (low rmsd), the other is bad

(rmsd near 60 Å), although both have exactly the same interac-

tion interface. Because CCD properly identifies native-like dock-

ing poses for multimeric proteins, it is strongly preferred over the

conventional rmsd to guide machine learning in the derivation of

a scoring function.

Cognate versus Generic tRNA
A large number of binding surfaces are provided by the 2,000+

tRNAs (Chan and Lowe, 2009), which are further enhanced by

the presence of modified nucleotides (Motorin and Helm,

2010). This diversity is currently intractable computationally. To

reduce the search, we utilize a single prototypical, free-form

tRNA, yeast tRNAPhe (4tra). The use of the free-form tRNAPhe

scaffold is warranted because �80% of the phosphate groups

of tRNAPhe are within 6 Å of the cognate tRNAs among the 28

known tRNPs (Figure 1B). Bound tRNAs undergo conformational

changes with respect to their free-form states, but the extent of

the conformational changes has an upper-bound limit within
C

one-half of the width on an RNA helix (�6 Å). Furthermore, the

score of the cognate tRNP interaction is proportional to that for

tRNAPhe with a Pearson’s correlation coefficient of R = 0.7 (Fig-

ure 1C). Hence, the free-form tRNAPhe is a credible surrogate for

many tRNAs. This simplification greatly reduces the computa-

tional requirements at the expense of rendering our method

partially insensitive to tRNA sequence and modification. We

will not identify all tRNA-binding proteins or be able to predict

which specific tRNA binds to which protein. This deficiency is

compensated for here because of the potential of our method

to identify new tRNA-binding proteins at the genomic scale.
Scoring Function
The CCP captures the interaction of the protein and RNA moi-

eties at the tRNP interface and serves as the basis of our scoring

function. However, the high dimensionality of the CCP vector

makes it difficult to weigh the magnitude and the sign of the

RNP interaction for all 300 entries. To reduce the number of

required entries and to identify key RNP interactions, we utilize

a forward version of the sequential feature selection (SFS)

approach (Romero and Sopena, 2008). SFS enables the identifi-

cation of the most-important interacting pairs among all possible

ones. We activate, one at a time, an interacting pair and evaluate

its performance at identifying native-like docked conformations.

The activated pair that gives rise to the best performance is

permanently activated, and the process is repeated. Hence, at

each step, we identify an important interaction term, although

we do not know if it is used to directly identify native poses or

to discriminate against the large decoy sets.

As more key interaction terms are picked, the identification

performance plateaus and even starts to decrease when too

many terms are used (Figure S3A). This decrease is due to

more interaction terms being better able to discriminate the

native poses during training, but it starts to ‘‘learn-by-heart’’

these docking poses at the expense of poorer identification per-

formance on unseen cases. After activating up to 32 terms, the

optimal number of interacting pairs is found to be only 12 before

overtraining sets in Figures S3B and S3C. This low number of pa-

rameters makes it likely that the scoring function will be robust

through a range of various tRNA shapes and sequences. The

final scoring function has the form

S=Coulomb+uccp
��!� ccp��!

;

where uccp
��! has just 12 nonzero dimensions and therefore is

exceedingly fast computationally, enabling scoring of very large

decoy sets at the genomic scale.

The attractive and repulsive interplay between specific pairs of

moieties reflects the specificity of tRNP docking (Table S2). The

docking poses are too imprecise to incorporate hydrogen-

bonding interactions and may explain why the Coulomb term is

inadequate by itself. To bind a tRNA, a protein has to pierce

the negatively charged envelope of the nucleic acid. The largest

electropositive patch, however, may not be the actual binding

surface. For example, arginine specifically interacts with most

nucleotides in addition to the electrostatic term. Although Arg

residue can bind to the major groove or the Hoogsteen edge of
ell Reports 3, 1703–1713, May 30, 2013 ª2013 The Authors 1705
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Figure 2. Computational Test of Known tRNA-Binding Proteins
(A) Distance distribution of aminoacyl motif residues to tRNA phosphate 76 for 24 aaRSs for which only the apo structure has been solved. Our predicted

distribution of average distances (magenta) is compared to the observed distribution of 19 solved aaRS-tRNA complexes (black). A poorly performing scoring

function for tRNP such as RNA12 is unable to position the tRNA phosphate 76 close to the active site of the aaRS (gray).

(B) Two examples of positioning of the tRNA-30CCA tail in the aaRS’s catalytic site. Shown on top is the rmsd structural clustering of the best 50 scores. Also

shown is the centroid of the cluster with the least average distance of the tRNA 30CCA tail (blue dots) to the protein’s catalytic site residues (orange dots).

See also Tables S3 and S5.
guanosine (Kondo and Westhof, 2011), this interaction type is

not emphasized as strongly in our scoring function compared

to the other arginine-related interactions.

Themagnitude and sign of these 12 weights in uccp
��! are set in a

subsequent learning step. The scoring function is chosen to

identify native-like docking poses with low CCD values, while

correlating the total scores computed for yeast tRNAPhe with

those computed for the cognate tRNA (Figure 1C). Despite the

simplicity of the scoring function, it can identify many native-

like docking poses in very large decoy sets.

Scoring tRNP Complexes

We apply two filters to define a successful docking trial. The first

filter consists of retaining the best 50 scores among the 105

docking poses. The next filter consists of retaining those dock-

ing poses that are native-like as defined by having a CCD rank

lower than 100. A successful trial is defined as when more

than ten poses pass both filters. Nativeness is determined by

the CCD value obtained from the vector dot product of the

candidate and native CCP vectors. The method is successful

for 23 of the 28 tRNPs (82%) and outperforms methods using

Coulomb terms or an all-atom statistical potential (Figure 1D;

Table S1).

Our scoring function is able to identify authentic tRNA-binding

proteins (Figures 1E and 1F; Table S3). The scores of the proteins

in the known 28 tRNPs are well separated from those of 81

randomly selected proteins from the PDB (Table S4) that are pre-

sumed not to bind tRNA. Among the 28 tRNPs used in the ma-

chine learning, 24 have an isoelectric point (pI) below 7 as do

half of the known RNA-binding proteins (Castello et al., 2012).

For these acidic proteins, binding affinity is achieved through

detailed interactions rather than generic charge-charge interac-

tions. This property likely increases binding specificity at the

expense of affinity. In fact, for the 28 known tRNA binders, the

mean score of the 24 acidic proteins is 1.5 SDs better than for

the four basic proteins with only a 29% overlap (Extended Dis-

cussion, 1). This result indicates that our scoring function for

tRNA binding is largely trained for acidic proteins.
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To further investigate the methodology, we examine the CCP

contribution derived from the two major functional hot spots in

tRNA: the acceptor stem (AA, nt 1–4); and the anticodon stem

loop (AN, nt 33–37). One contacting nucleotide contributes

approximately a value of 40 to the AA or AN score. For the 28

tRNPs, the contributions for these two regions are 140 ± 109

and 68 ± 67, respectively (Table S3). Predicted and cognate

AA or AN values highly correlate (R2 = 0.8 with a slope of 1.05

for AA, and R2 = 0.5 with a slope of 1.06 for AN; Table S3)

when the cognate score is greater than 40.

We use both CCD and AA/AN scores to predict tRNA binding

for a protein. On the basis of the 28 tRNP training set, we set the

CCD score to be lower than �50, which is 1.33 SD above the

average of the known tRNA-binding proteins (�98 ± 38; Fig-

ure 1F), and the AA or AN score to be greater than 40.

We tested our ability to identify known tRNA-binding proteins

using their solved apo structure (Figure 2; Table S5). This test

serves to quantify our ability to identify tRNA-binding proteins,

the correctness of the docking pose, and as a realistic control

for our PDB-wide screen for tRNA binding where only the un-

bound protein structure is available. We choose 24 aminoacyl-

tRNA synthetases (aaRSs), and 20 (83%) are identified as

tRNA binding (Table S5), indicating that our scoring function

has a very good chance of identifying potential new tRNA-bind-

ing proteins even when only the apo structure is known.

We compared the distance between aaRS’s active site and

the amino acid attachment site on tRNA’s 30 terminal residue

(A76) in our predictions with the distribution in known structures

(TRNASYNTH motif in the PRINTS database [Attwood, 2002] via

the InterPro web site [Hunter et al., 2009]). For the 19 solved

aaRS-tRNA complexes, the average distance of active site res-

idues to A76 is less than 30 Å with a SD of 10 Å (Table S3).

This distribution is comparable for our predicted docked tRNA

conformations with the 24 aaRS apo-proteins (Figure 2A; Table

S5). Our scoring function is therefore able to position the

30CCA tail of tRNA within the catalytic sites of aaRSs (examples

shown in Figure 2B). This result indicates that our approach can
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Figure 3. Performance of Individual Scoring Functions for 12 Non-tRNA-RNPs with Distinct RNAs

(A) Fraction of the top 50 predictions in the top 100 poses for each protein. A threshold of 20% generates at least ten native-like poses among the top 50 scores

among 105 decoys and is considered a success (dashed line). The same scoring function is also applied to simultaneously select (B) the cognate protein for each

RNA and (C) the cognate RNA for each protein. For ease of comparison, the scores of the various complexes are normalized such that the lowest (best) score

is �1, and the highest (worst) score is 0. Cognate partners are indicated with the thick black bar; the x axis shows the ranking of the cognate complex for each

RNP. See also Tables S6 and S10.
be successful in the identification of docked conformations on

apo structures, although not yet at atomic resolution.

Scoring for Non-tRNA Structural Motifs

We next examined whether our CCP-based scoring also works

for other RNPs. This task is far more challenging because the

number of solved RNP structures is far fewer for non-tRNA struc-

tural motifs. We selected 12 distinct RNP structures to carry out

this analysis (Table S6). Our approach is inaccurate when all

structures are used to generate a single scoring function, pre-

sumably due to the large diversity of interactions among distinct

RNPs (Extended Discussion, 2).

More success is obtained when each RNP is used to derive

its own scoring function, in particular, in the correct identification

of RNP pairs and docking sites (Figure 3). A robust scoring func-

tion can be derived from a single RNP by requiring that it simul-

taneously satisfies three criteria: (1) it identifies the native

docking pose in large decoy sets; (2) the protein recognizes

the cognate RNA scaffold among noncognate RNAs; and (3)

the RNA recognizes the cognate protein among noncognate

proteins. We examined the entire 12 protein 3 12 RNA docking

space by generating 144 decoy sets containing a total of 1.44

3 107 decoys. Because only one cognate RNP is used in

machine learning, the learning capacity is decreased, and the

task of learning is made more stringent by using only 6 randomly

chosen weights instead of the 12 used for tRNPs (Extended

Experimental Procedures). We applied the same criteria used

for tRNPs to define a successful docking trial. We found the

cognate docking site for all 12 RNPs (Figure 3A). For the identi-

fication of native RNP pairings, 10 of 12 proteins have the best

score, and the 2 remaining proteins have the second-best score

for docking with cognate RNA (Figure 3B); 11 out of 12 RNAs

have the best score, and the 1 remaining RNA has the second-

best score for docking with cognate protein (Figure 3C). This

result shows that the CCP approach is capable of finding

RNPs as long as each RNA structural motif is trained separately.

To discover unknown RNPs for a non-tRNA structural motif, the

scoring function should be made more specific by requiring it to

have maximal score separation between the cognate and non-
C

cognate RNPs, as we have done for tRNPs (Figure 1F).

Nevertheless, our result demonstrates that a single-solved

RNP structure is sufficient to generate a viable, CCP-based

scoring function for RNP.

PDB-wide Computational Screen

In order to discover tRNPs, we computationally screened 801

unique mammalian proteins for their propensity to bind tRNA

(Table S7). We screened only acidic proteins (pI <7) because

our tRNP scoring is largely trained for acidic proteins. Using

both the CCD and the AA/AN scores, 37 proteins or �4.6% of

the screened proteins are identified as tRNA binding (Table 1).

Three proteins that are known to interact with tRNA have scores

worse than �50, representing a false-negative rate of less than

0.4% (Table S8). Among the 24 known tRNA-binding proteins

screened separately, our positive rate was >83% (Figure 2).

Protein binding to a tRNA may be functionally important as

illustrated with several predicted complexes (Figure 4, shown

according to the overall scores). These predicted tRNA-binding

proteins are involved in a wide range of cellular processes,

including protein modification, histone modification, cell-cycle

control, gluconeogenesis, glutathione synthesis, and membrane

trafficking. These proteins are all cellular enzymes that are previ-

ously not known to interact with any RNA; tRNA bindingmay help

regulate the activity of these enzymes.

It is commonly assumed that a large positive electrostatic

patch on the protein surface is a prerequisite for nucleic acid

binding (Ahmad and Sarai, 2011; Bahadur et al., 2008; Chen

and Lim, 2008; Polozov et al., 2006; Shazman and Mandel-Gut-

freund, 2008; Tworowski et al., 2005; Tworowski and Safro,

2003). The proteins we analyzed here for potential tRNA binding

all have pI below 7, and their ability to dock tRNA relies on the

spatial organization of their positively charged amino acids.

The total binding score is not entirely of Coulombic nature (Table

1; total score versus Coulomb score). The location of the largest

positive patch does not always coincide with the predicted

tRNA-binding site. Other precedents for unfavorable Coulomb

interactions between proteins and their bound tRNAs can be

found in known tRNPs (Figure 1D; Table S3), and the Coulomb
ell Reports 3, 1703–1713, May 30, 2013 ª2013 The Authors 1707



Table 1. Predicted Mammalian tRNA-Binding Proteins

PDB Score Coul AA AN pI Description

2D39-1 �91.8 �16.8 45.8 20.5 5.6 Ficolin-1

2IAG-1 �89.2 �55.4 54.3 7.0 6.7 Prostacyclin synthase

1KHB-1a �84.7 �25.8 71.6 12.7 5.7 Phosphoenolpyruvate carboxykinase, cytosolic (gtp)

1R42-1 �82.5 +12.6 66.3 13.2 4.8 Angiotensin i/collectrin homology domain

3IFQ-1 �79.5 �34.1 44.8 26.8 6.2 Plakoglobin/e-cadherin

1B41-1,-2 �78.2 �35.2 52.2 7.8 6.4 Acetylcholinesterase/fasciculin-2

2BYD-1 �76.9 �34.1 41.2 15.6 6.4 hspc223

3I2B-4 �74.2 �54.1 52.1 28.8 6.5 6-Pyruvoyl tetrahydrobiopterin synthase

1ND7-1 �74.2 �26.4 50.0 5.7 5.9 ww domain-containing protein 1

1SIQ-1 �73.7 �25.0 44.0 20.3 6.0 Glutaryl-coa dehydrogenase

2P0A-1 �73.7 �46.3 73.5 12.5 6.4 Synapsin-3

2Q32-1 �71.8 �10.4 61.0 3.7 5.5 Heme oxygenase 2

2FMM-1 �70.5 �21.0 46.2 20.8 6.2 Protein emsy/chromobox protein homolog 1

1D8D-1a �70.3 �33.2 34.3 43.1 5.9 FT (a)/FT (b)

2CJW-1 �69.5 �35.1 42.2 19.3 6.0 gtp-binding protein gem/gtp-binding protein gem

3I2B-3 �69.2 �49.9 45.6 17.1 6.2 6-Pyruvoyl tetrahydrobiopterin synthase

2GAO-1a �69.1 �31.7 52.4 13.4 6.6 gtp-binding protein sar1a

2VGQ-1 �68.6 +1.0 59.5 21.8 4.8 Maltose-binding periplasmic protein

1CJL-1 �67.2 �7.7 64.7 5.8 5.3 Procathepsin l

3ISQ-1 �66.9 �48.4 50.1 16.1 6.7 4-Hydroxyphenylpyruvate dioxygenase

3EHT-1 �65.3 �7.3 54.5 12.4 5.0 crfr1 extracellular domain and mbp/corticoliberin

2IGQ-1a �63.0 �31.6 131.1 0.2 5.8 Euchromatic histone methyltransferase 1

2GL7-1 �62.8 �44.6 52.0 20.5 6.6 b-catenin/transcription factor 7-like 2/b-cell lymphoma 9

2B7A-1 �62.0 �22.6 48.8 5.0 6.8 Tyrosine-protein kinase jak2

3D8B-1 �61.2 �10.1 48.6 8.8 5.3 Fidgetin-like protein 1

2PET-1 �60.7 �33.7 49.4 3.7 6.3 Lutheran blood group glycoprotein

1S9I-1a �59.5 �36.1 104.8 1.5 6.3 Dual-specificity mitogen-activated protein kinase kinase 2

2HGS-1a �58.2 �28.3 42.7 3.6 5.6 Protein (glutathione synthetase)

2G01-2 �55.1 �26.3 91.2 6.6 6.4 Protein kinase 8/c-jun-amino-terminal kinase-interacting 1

3FQW-1 �54.1 �39.7 54.7 13.6 6.1 hla class I histocompatibility antigen, a-2 a/b-2-microglobulin

1FCH-3,-4 �53.4 +19.8 43.9 21.9 4.7 Peroxisomal targeting signal 1 receptor

1EZF-2 �51.5 �12.7 62.4 4.6 5.5 Farnesyl-diphosphate FT

1JUO-1 �51.1 �7.3 43.7 12.3 4.9 Sorcin

1DHS-1 �50.7 �3.4 69.6 1.6 5.3 Deoxyhypusine synthase

2VUX-1 �50.4 �8.6 55.2 2.3 5.2 Ribonucleoside-diphosphate reductase subunit m2 b

3N1G-1 �50.3 �11.9 49.1 3.2 5.2 Desert hedgehog protein/brother of cdo

3E7O-1,-2 �50.2 �26.5 59.0 7.3 6.2 Mitogen-activated protein kinase 9

Each protein is indicated by its PDB entry. Scores shown are the average over the top 50 best scores. Coulomb (Coul) is the electrostatic contribution.

AA is the AA contact, and AN is the AN contact.

See also Tables S7 and S8.
aProteins tested for tRNA binding in vivo.
field alone does not perform well at coordinating docking config-

urations (Figure 1D).

Experimental Validation

We tested six predicted hits for tRNA binding in cells along with

three proteins that we predicted not to bind tRNA (Figure 5). All

nine proteins are known to be of moderate abundance in

HEK293T (Uhlen et al., 2010). We applied UV-crosslinking immu-

noprecipitation followed by tRNA microarray (CLIP-chip) for the
1708 Cell Reports 3, 1703–1713, May 30, 2013 ª2013 The Authors
experimental validation (Uleet al., 2003, 2005; ZhangandDarnell,

2011). In CLIP-chip (Figure 5A), HEK293T cells were UV cross-

linked, lysed, and the crosslinked RNP complex was purified at

high stringency using antibodies specific for the protein of inter-

est. The purified complex was then treated with Proteinase K to

completely degrade the protein, and all RNAs present were visu-

alized by 30 32P labeling. Radiolabeled RNAs of tRNA sizes were

excised from thedenaturing gel, and the tRNAswere identified by



A B 

C D 

E F 

1khb 

1d8d 

2gao 2igq 

1s9i 
2hgs 

Figure 4. Six Predicted tRNPs that Are Experimentally Tested

Rmsd clustering of tRNAs (blue) after optimal superposition of proteins (or-

ange) for the 50 top-scoring poses. Our method does not yet predict a single

specific structure at atomic resolution; rather, many top-scoring docked

configurations form structural clusters. The centroid centers of the largest (1;

marine) and second-largest (2; teal) clusters are shown on top. These two

clusters are shown as ribbons inside shells in the 3D representations.

(A) Phosphoenolpyruvate carboxykinase (1KHB) is a metabolic enzyme that

converts oxaloacetate to phosphoenolpyruvate.

(B) FT (1d8D) is a protein modification enzyme that adds a farnesyl group to

proteins with a CaaX motif near C terminus.

(C) GTP-binding protein SAR1a (2GAO) is a GTPase involved in membrane

trafficking of other proteins.

(D) Euchromatic histone methyltransferase 1 (2IGQ) is a histone modification

enzyme.

(E) Dual-specificity mitogen-activated protein kinase kinase 2 (1S9I) is a pro-

tein kinase involved in cell-cycle regulation.

(F) Glutathione synthetase (2HGS) is an enzyme that synthesizes a metabolite

to maintain cellular redox state.

C

tRNAmicroarrays.Weapplied onepositive control using the anti-

body against EF-1a, which is known to bind all elongator tRNAs,

and two negative controls using nonimmunized serum (IgG) and

GFP antibody (Figures 5B–5D). We find that our predictions are

100% accurate. There were no unsuccessful trials.

We further tested whether tRNA binding occurs in vitro for one

predicted protein, farnesyltransferase (FT; Figure 6). Recombi-

nant rat FT was purified from E. coli, and tRNA binding was

examined by native gel shift followed by tRNA microarrays. Us-

ing total human tRNAs, two gel-shifted complexes were identi-

fied, and many, but not all, tRNAs were bound by FT, similar to

the binding observed in vivo (Figures 6A and 6B). The half-satu-

ration point was�0.3 mM for complex 1 and�2 mM for complex 2

(Figure 6C). The cellular concentration of total tRNA in amamma-

lian cell is on the order of �30–100 mM, and an average concen-

tration of a tRNA isoacceptor is in the micromolar range (Dittmar

et al., 2006). The gel shift result indicates that FT binds tRNA at

affinities relevant to physiological conditions.

DISCUSSION

We have described a computational approach to enable PDB-

wide screening of potential RNA-binding proteins. Our scoring

function is devised with CCP, a compact representation of a

docking configuration that reflects the stereochemical features

of the binding interface. The quality of a docked pose with

respect to the cognate RNP structure is measured using the

CCD, instead of the more conventional rmsd. CCD is better

suited here in part due to its robustness to chemically equivalent

docking sites. For tRNP, our scoring function requires only 12

parameters obtained using machine-learning methods. This

small parameter space contrasts with the several orders of

magnitude larger number of parameters required to encode sta-

tistical potentials, a standard approach for addressing this prob-

lem (Tuszynska and Bujnicki, 2011). We further show that our

approach of CCP coupled with machine learning can be applied

to non-tRNP complexes.

Several studies have previously proposed RNP scoring func-

tions mainly of the contact-only or distance-dependent types;

they perform poorly or feature many thousands of parameters.

These scoring functions are knowledge based because they

are derived from statistics extracted from solved RNP structures.

Because structures for relatively few RNPs have been solved so

far, the validity of scoring functions based on low-statistical

counts and high-dimensional feature spaces is difficult to

assess. Our scoring function, however, is tolerant to the

atomic-level faults at the atomic scale but precise enough to

assess the potential RNA-binding ability of a protein. Further-

more, our scoring function can identify the native docking pose

among many thousand alternatives for a given RNP pair. We still

make use of solved RNPs, not to provide for statistical counts

but to guide the machine-learning process at identifying

native-like docked complexes.

One disadvantage of ours and many other approaches is that

potential conformational changes upon binding are not explicitly

considered. Induced fit and conformational selection are com-

mon in RNP formation (Fulle and Gohlke, 2010; Shajani et al.,

2011), although major changes are rare (Ellis and Jones, 2008).
ell Reports 3, 1703–1713, May 30, 2013 ª2013 The Authors 1709
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Figure 5. In Vivo Validation of Nine Predictions in HEK293T Cells

(A) CLIP-chip workflow. The final RNA products are 32P labeled and analyzed on denaturing PAGE (B–D) and tRNA microarray (E–G). Among the nine proteins

analyzed, six are predicted to bind tRNA (Table 1): FT (FTase), phosphoenolpyruvate carboxykinase (PEPCK-C), euchromatic histone methyltransferase 1

(EHMT-1), mitogen-activated protein kinase kinase 2 (MEK-2), glutathione synthetase (GSS), and GTP-binding protein SAR1a (SAR). Three are predicted not to

bind tRNA (Table S8): RWD domain-containing protein 1 (RWD), calsequestrin-2 (CAL), and SCO1 protein homolog (SCO).

(B) PAGE analysis of FTase with or without UV crosslinking. EF1a binds all elongator tRNAs and is a positive control. Nonimmunized serum (IgG) and GFP

antibody are negative controls. Yeast tRNAPhe is a tRNA standard (std). Cells contain type I (75–78 nt) and type II (83–93 nt) tRNAs (indicated by red dashed lines).

(C) PAGE analysis of the five other predicted tRNA-binding proteins.

(D) PAGE analysis of three proteins that are predicted not to bind tRNA.

(E) tRNA microarray analysis of FTase and EF1a samples validates the identity of tRNAs derived from the bands shown in (B).

(F) tRNA microarray analysis of tRNA species for the other predicted tRNA-binding proteins from the bands shown in (C).

(G) Semiquantitative analysis of Clip-chip array results comparing the top 18 tRNA species crosslinked to the respective protein. The tRNA abundance is grouped

in top, middle, and bottom thirds. As with EF-1a, all six proteins in various degrees prefer binding to elongator tRNAs, but not to initiator-tRNAi
Met even though

tRNAi
Met is highly abundant in HEK293T cells (arrow). The tRNA abundance in HEK293Twas determined previously using our standard, fluorescence-based array

method (Novoa et al., 2012).
Folding upon binding represents an extreme class of conforma-

tional change, but it may be an option for high-confidence pre-

dictions. Another challenge in the computational analysis of

RNP interactome is that many RNA-binding proteins recognize

just RNA sequences that are in single-stranded regions

(Extended Discussion, 3; Agostini et al., 2013; Goodarzi et al.,

2012; Serganov and Patel, 2008; Shulman-Peleg et al., 2008).

An inherent limitation of using only solved structures is that

many of these are protein domains, not full-length proteins.

However, using mammalian protein domains is still valid

because many mammalian proteins in the absence of their inter-

acting partners are made of folded domains that are connected

like beads on a string. Undoubtedly, our approach is incomplete

and likely misses many tRNA-binding proteins in the cell. How-

ever, our approach is fundamentally useful: it predicts specific

proteins that can be tested experimentally, and it is highly suc-

cessful because we discovered six tRNP complexes in vivo.
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The six tRNA-binding proteins have broad binding selectivity

for tRNA, similar to many mRNA-binding proteins that recognize

broad sequence/structural motifs in manymRNAs (Ascano et al.,

2012; Licatalosi et al., 2008). Micromolar-binding affinity may be

sufficient for tRNA-binding proteins to perform their function

because it matches the cellular tRNA concentration. Noncanon-

ical roles of tRNA are previously known for only two other

mammalian proteins: the regulation of protein kinase GCN2

activity in stress response (Hinnebusch and Natarajan, 2002);

and the prevention of HIV gag protein synthesis through binding

to the innate immune protein Slfn11 (Li et al., 2012b). Our predic-

tion and discovery of many tRNA-binding proteins suggest a

widespread, noncanonical role for tRNP interaction in cellular

communications between translation and other processes (Fig-

ure S4). In this model, when translation activity is high, most

tRNAs are used by the ribosome, and only a small amount of

tRNA is available to interact with other proteins.When translation
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Figure 6. In Vitro Validation of a Predicted

tRNP

(A) Native gel shift of recombinant rat FT with 50
32P-labeled total human tRNA. Two shifted com-

plexes (cplx) are present as shown in the full gel

(top) and in the inset from a second gel shift

experiment.

(B) tRNA microarray results comparing the input

and the gel shift tRNAs. Many tRNAs were bound

by FT, consistent with the CLIP-chip result in vivo.

(C) Quantitative analysis shows half-saturation in

the range of �0.3 and �2 mM for complex 1 and 2,

respectively.
activity is low, more tRNA becomes available to interact with

other proteins, which may result in up- or downregulation of a

wide array of diverse cellular processes.

In summary, we present computational RNP prediction at the

genomic scale together with experimental validation of six RNPs.

Our results raise important biological questions for the role of the

discovered tRNPs. RNPs have become increasingly important in

defining the functions of RNA and proteins. RNP formation oc-

curs at different times and places and at different levels in cells;

our computational approach can be an excellent complement to

experiments by either suggesting new targets of investigation or

providing independent validation and ranking of experimental re-

sults. Furthermore, our CCP-based scoring emphasizes binding

specificity that is often more important than affinity in biological

function (Shajani et al., 2011). Our approach should be useful to

uncover and extend the network of RNA-binding proteins, thus

achieving better understanding of RNA biology.

EXPERIMENTAL PROCEDURES

Sections described in Extended Experimental Procedures include tRNP

benchmark, docking pose generation, machine learning, and validation of FT

binding to tRNA.

CCP and CCD

Because docking prediction aims to reproduce the contacts observed in

solved complexes, we employ a compact representation of any docking

configuration that captures the nature and magnitude of the contacting moi-

eties. This is done with the CCP, a 300-dimensional vector:

CCP
��!

=

0
@Xala

Cb

XA
M

fðrÞ;
Xala
Cb

XA
m

fðrÞ;
Xala
Cb

XA
P

fðrÞ;/;
Xval
Cb

XT
P

fðrÞ
1
A;

where the double sum is over a given pair of moieties (e.g., the first term is be-

tween all Cb of alanine and major groove of adenosine). The 300 dimensions

represent the product of the 20 amino acid types multiplied by 15 types for nu-

cleic acids (three interacting centers, major groove [M], minor groove [m], and

phosphate group [P], for the five nucleotides [A, C, G, U, and T] to cover both

RNA and DNA). For RNA, all entries that pertain to thymines (T) have a CCP

value of zero. The energy function f(r) has a form similar to a Coulombic 1/r po-

tential but with a separation distance that accounts for the average extent of

the protein’s side chain beyond the Cb atom (Table S11): f(r) = 1/max(3.5 Å,

r- < extent > ). Subsets of the CCP vector can be used to estimate the extent

of protein binding to particular stems loops of the tRNA. Because both the AA

and the AN are two functional hot spots of tRNA, we use the summations of the

CCP for nt 1–4 for AA and 33–37 for AN. The higher these values, the more the

protein contacts these regions.
C

Any RNP is represented with the CCP vector. The similarity of the model and

the native complexes can be obtained by computing the angle between their

CCP vectors. This angle, or CCD, is obtained from the vector dot product:

cosðCCDÞ=

�
CCPnat

����! � CCPmdl

�����!�
�����CCPnat

����!����3
����CCPmdl

�����!����
�:

Themore different the CCPs, which represent the chemical properties of the

RNP interface, the greater the angle. One advantage of CCD is that each type

of interacting center is grouped without consideration of where it lies on the

interface. Hence, CCD can easily identify two native-like docking poses for a

near-symmetric dimer, whereas only one of the models will have a low rmsd.

We found that CCD improves the description on the chemical properties of

the interface, whereas the use of rmsd to guide machine learning may lead

to conflicting signals and inhibits the proper description of RNP interactions.

Scoring Function

By weighting the entries of a CCP, it can be used as a scoring function:

S=Coulomb+uccp
��! � ccp��!

;

where the total score is the sum of the Coulomb energy, (Charge1,Charge2)/

r12, plus a weighted CCP. Machine-learning methods are used to reduce the

nonzero entries in uccp to 12 from the original 300 dimensions. To evaluate

CCD, we first use the full 300-dimensional CCP vector. However, a full CCP

set contains too many dimensions for proper training and weighting to be

used in a scoring function. We use an interaction matrix between protein

(rows) and RNA (columns) moieties and group together columns to reduce

the dimensionality. The CCP is brought down to 120 components by summing

the interactions of both the major and minor grooves together, leading to 20

protein moieties interacting with only 6 nucleic acid moieties, the phosphate

groups (regardless of nucleotide type), and the side chains (major and minor

combined) of each five nucleotide types. The total number of pairs is 203

(1+5) = 120. After training, these 120 components are further reduced to 12

for the scoring tRNPs and to 6 for the scoring of other RNPs.

UV CLIP-Chip

To experimentally verify the predicted tRNPs, we performed the Clip-chip

method in living mammalian cells (Figure 5A). CLIP is a widely used method

that identifies the interaction between RNA and proteins through covalent

bond formation upon UV irradiation and has been successfully applied to

investigate RNP interactions in living cells (Ule et al., 2003; Zhang and Darnell,

2011). As described previously, we have developed tRNAmicroarray methods

to identify and to determine the abundance of tRNAs in a cellular RNA mixture

(Dittmar et al., 2006; Pavon-Eternod et al., 2009). In our study, CLIP was

coupled with tRNA microarray analysis to identify the tRNAs that bind to their

corresponding protein. To validate our predictions, we selected six predicted

tRNA-binding proteins: FTase (1D8D), PEPCK (1KHB), EHMT (2IGQ), MEK

(1S9I), GSS (2HGS), and SAR (2GAO). We also selected three proteins that

are predicted not to bind tRNA: RWD (2EBM), CAL (2VAF), and SCO (1WP0).
ell Reports 3, 1703–1713, May 30, 2013 ª2013 The Authors 1711



In addition, we applied one positive control using antibody against EF1a,

which is known to bind all elongator tRNAs, and two negative controls using

normal IgG and GFP antibody to preclude nonspecific binding in our

experiments.

The CLIP protocol was adapted from published studies withminormodifica-

tions (Ule et al., 2005). Typically, HEK293T cells were first grown in a 10 cm

dish until�80%confluency (�83 106 cells). Cells were placed in a Stratalinker

on ice and irradiated oncewith 400mJ/cm2 at 254 nm and harvested with a cell

scraper. Pellets of crosslinked cells were resuspended in 0.5ml lysis buffer (13

PBS, 0.1% SDS, 1%Nonidet P-40, 0.5% sodium deoxycholate) with 400 U/ml

RNase inhibitor (New England BioLabs) and freshly prepared protease in-

hibitor cocktail (Santa Cruz Biotechnology). Cell lysate was centrifuged at

17,000 3 g for 30 min at 4�C after incubation on ice for 2 hr. The supernatant

was precleared upon adding 20 ml Dynabeads protein A beads (Life Technol-

ogies) and incubation for 1 hr at 4�C. The supernatant was spun again at

17,000 3 g for 10 min at 4�C and transferred to a fresh tube.

To prepare antibody-conjugated beads, 50 ml protein A beads in a fresh

microtube were washed twice with 1 ml lysis buffer, then resuspended in

200 ml lysis buffer. A total of 4 mg of each antibody (FTase, PEPCK, EHMT,

MEK, GSS, SAR, RWD, CAL, SCO, and GFP antibodies are from Santa Cruz

Biotechnology; EF1a and rabbit IgG are from Cell Signaling Technology) was

added to each bead batch. The mixture was rotated for 4 hr at room temper-

ature and then washed three times with 1 ml lysis buffer. The lysis buffer was

removed and the supernatant from above added to each of the antibody-

conjugated beads. Themixture was rotated at 4�Covernight, and the superna-

tant was then discarded. Beads were washed 33with 1ml high-salt buffer (53

PBS, 0.1% SDS, 1% Nonidet P-40, 0.5% sodium deoxycholate) and 33 with

1 ml wash buffer (20 mM Tris-HCl [pH 7.4], 10 mM MgCl2, 0.2% Tween 20).

After immunoprecipitation, beads were resuspended in 200 ml RNA elution

buffer (100 mM Tris-HCl [pH 7.4], 10 mM EDTA, 1% SDS) containing

2 mg/ml Proteinase K (Ambion). Antibody-bound RNAs were released from

the beads upon incubation at 50�C for 30 min. The Proteinase K was then

removed upon extraction with 200 ml phenol/chloroform, and the RNA was

recovered by ethanol precipitation. The RNA was 30 32P labeled using [32P]

pCp and T4 RNA ligase (England et al., 1980). The 32P-labeled mixture was

directly analyzed on 10% denaturing PAGE containing 7 M urea using purified
32P-labeled yeast tRNAPhe as size control (Figures 5B–5D).

To analyze the 32P-labeled RNA by tRNAmicroarray (Figures 5E and 5F), the

corresponding tRNA sized bands were cut out of the gel and eluted with crush

and soak buffer (50 mM KOAc/200 mM KCl [pH 7.0]) at 4�C overnight. The

eluted RNA was recovered by ethanol precipitation and dissolved in water.

tRNAmicroarray preparation, hybridization, and data analysis were performed

according to methods described previously by Netzer et al. (2009) and Pavon-

Eternod et al. (2009).
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