46 research outputs found

    Periodic shearing motions in the Jovian magnetosphere causing a localized peak in the main auroral emission close to noon

    Full text link
    Recently, a transient localized brightness enhancement has been observed in Jupiter's main auroral emission close to noon by Palmaerts et al. (2014). We use results from three-dimensional global MHD simulations to understand what is causing this localized peak in the main emission. In the simulations, the peak occurs every rotation period and is due to shearing motions in the magnetodisk. These shearing motions are caused by heavy flux-tubes being accelerated to large azimuthal speeds at dawn. The centrifugal force acting on these flux-tubes is then so high that they rapidly move away from the planet. When they reach noon, their azimuthal velocity decreases, thus reducing the centrifugal force, and allowing the flux-tubes to move back closer to Jupiter. The shearing motions associated with this periodic phenomenon locally increase the field aligned currents in the simulations, thus causing a transient brightness enhancement in the main auroral emission, similar to the one observed by Palmaerts et al. (2014).Comment: accepted for publication on 2018/04/25 by Planetary and Space Scienc

    The far-ultraviolet main auroral emission at Jupiter - Part 1:dawn-dusk brightness asymmetries

    Get PDF
    The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ~ 3 times brighter than the dawn side in the southern hemisphere and ~ 1.1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements. We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere

    The far-ultraviolet main auroral emission at Jupiter – Part 2:vertical emission profile

    Get PDF
    The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ~ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities

    Reconnection Acceleration in Saturn's Dayside Magnetodisk: A Multicase Study with Cassini

    Get PDF
    Recently, rotationally driven magnetic reconnection was first discovered in Saturn's dayside magnetosphere. This newly confirmed process could potentially drive bursty phenomena at Saturn, i.e., pulsating energetic particles and auroral emissions. Using Cassini's measurements of magnetic fields and charged particles, we investigate particle acceleration features during three magnetic reconnection events observed in Saturn's dayside magnetodisk. The results suggest that the rotationally driven reconnection process plays a key role in producing energetic electrons (up to 100 keV) and ions (several hundreds of kiloelectron volts). In particular, we find that energetic oxygen ions are locally accelerated at all three reconnection sites. Isolated, multiple reconnection sites were recorded in succession during an interval lasting for much less than one Saturn rotation period. Moreover, a secondary magnetic island is reported for the first time at the dayside, collectively suggesting that the reconnection process is not steady and could be "drizzle-like." This study demonstrates the fundamental importance of internally driven magnetic reconnection in accelerating particles in Saturn's dayside magnetosphere, and likewise in the rapidly rotating Jovian magnetosphere and beyond

    On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux:Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki

    Get PDF
    We present simultaneous observations of aurorae at Jupiter from the Hubble Space Telescope and Hisaki, in combination with the in situ measurements of magnetic field, particles, and radio waves from the Juno Spacecraft in the outer magnetosphere, from ~ 80RJ to 60RJ during 17 to 22 March 2017. Two cycles of accumulation and release of magnetic flux, named magnetic loading/unloading, were identified during this period, which correlate well with electron energization and auroral intensifications. Magnetic reconnection events are identified during both the loading and unloading periods, indicating that reconnection and unloading are independent processes. These results show that the dynamics in the middle magnetosphere are coupled with auroral variability

    Asymmetric Kelvin-Helmholtz Instability at Jupiter's Magnetopause Boundary: Implications for Corotation-Dominated Systems

    Get PDF
    ©2018. American Geophysical Union. The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven by the growth of KHI modes in the prenoon and subsolar region (e.g., > 10 local time) that are advected by magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank (18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2 h at the dawn flank (6 MLT). Although the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other planetary missions.Link_to_subscribed_fulltex

    Near-magnetic-field-aligned energetic electrons above Saturn’s dark polar regions

    No full text
    Saturn's main auroral emissions define two oval-shaped regions, one encircling each magnetic pole. The regions at higher latitudes are generally “dark” (i.e., devoid of auroras), and are magnetically connected to the distant planetary magnetosphere where there is a much-debated interaction with the solar wind. Electric currents flow into the atmosphere along the magnetic field within these polar regions. Establishing whether polar magnetic flux is “open” or “closed” is key for diagnosing how the solar wind interaction works. Because energetic electrons moving almost parallel or anti-parallel to the magnetic field shed light on the field topology, we survey Cassini energetic particle data for rare instances when the spacecraft was able to measure these parts of the distribution in the polar field environment close to the planet. Over the entire mission we find 16 intervals when measurements at ∼0urn:x-wiley:21699380:media:jgra57498:jgra57498-math-0001 and ∼180urn:x-wiley:21699380:media:jgra57498:jgra57498-math-0002 pitch angles were made simultaneously without sunlight contamination. Across all the events, above-background field-aligned fluxes were measured intermittently by the >15 keV electron channels, extending up to ∼300 keV when present. Uni-directional anti-planetward fluxes were observed during 10 of the events, and bi-directional fluxes were observed during 6 of the events. We suggest the uni-directional anti-planetward fluxes indicate the presence of field-aligned beams, and that the bi-directional fluxes indicate regions of locally closed magnetic field. These results either mean the solar wind interaction is predominantly via global magnetic reconnection but is more complex than initially proposed, or that the interaction is instead predominantly “viscous-like” at Saturn

    Transient small-scale structure in the main auroral emission at Jupiter

    Get PDF
    The main auroral emission at Jupiter results from the ionosphere-magnetosphere coupling current system associated with the corotation breakdown of iogenic plasma in the current sheet. The morphology and brightness of the main auroral emission are generally suggested to be stable during time intervals of the order of an hour. Here we reveal a transient small-scale structure in the main emission that is characterized by a localized brightness enhancement close to noon local time. The evolution of this small-scale structure is investigated in both hemispheres on the basis of far UV images obtained with the Hubble Space Telescope between 1997 and 2007. Our observations indicate that the transient feature vary within a few tens of minutes. As one plausible explanation based on Galileo observations, we suggest that the localized enhancement of the field-aligned currents associated with the transient structure is due to the shear induced by intermittent inward plasma flow near noon in the equatorial plane.status: publishe
    corecore