282 research outputs found

    Modelling Aspects of Planar Multi-Mode Antennas for Direction-of-Arrival Estimation

    Get PDF
    Multi-mode antennas are an alternative to classical antenna arrays, and hence a promising emerging sensor technology for a vast variety of applications in the areas of array signal processing and digital communications. An unsolved problem is to describe the radiation pattern of multi-mode antennas in closed analytic form based on calibration measurements or on electromagnetic field (EMF) simulation data. As a solution, we investigate two modeling methods: One is based on the array interpolation technique (AIT), the other one on wavefield modeling (WM). Both methods are able to accurately interpolate quantized EMF data of a given multi-mode antenna, in our case a planar four-port antenna developed for the 6-8.5 GHz range. Since the modeling methods inherently depend on parameter sets, we investigate the influence of the parameter choice on the accuracy of both models. Furthermore, we evaluate the impact of modeling errors for coherent maximum-likelihood direction-of-arrival (DoA) estimation given different model parameters. Numerical results are presented for a single polarization component. Simulations reveal that the estimation bias introduced by model errors is subject to the chosen model parameters. Finally, we provide optimized sets of AIT and WM parameters for the multi-mode antenna under investigation. With these parameter sets, EMF data samples can be reproduced in interpolated form with high angular resolution

    Seroprevalence of viral infections in captive rhesus and cynomolgus macaques

    Get PDF
    Macaques serve as important animal models for biomedical research. Viral infection of macaques can compromise animal health as well as the results of biomedical research, and infected animals constitute an occupational health risk. Therefore, monitoring macaque colonies for viral infection is an important task. We used a commercial chip-based assay to analyze sera of 231 macaques for the presence of antibody responses against nine animal and human viruses. We report high seroprevalence of cytomegalovirus (CMV), lymphocryptovirus (LCV), rhesus rhadinovirus (RRV) and simian foamy virus (SFV) antibodies in all age groups. In contrast, antibodies against simian retrovirus type D (SRV/D) and simian T cell leukemia virus (STLV) were detected only in 5&thinsp;% and 10&thinsp;% of animals, respectively, and were only found in adult or aged animals. Moreover, none of the animals had antibodies against herpes B virus (BV), in keeping with the results of in-house tests previously used for screening. Finally, an increased seroprevalence of measles virus antibodies in animals with extensive exposure to multiple humans for extended periods of time was observed. However, most of these animals were obtained from external sources, and a lack of information on the measles antibody status of the animals at the time of arrival precluded drawing reliable conclusions from the data. In sum, we show, that in the colony studied, CMV, LCV, RRV and SFV infection was ubiquitous and likely acquired early in life while SRV/D and STLV infection was rare and likely acquired during adulthood.</p

    First-principles molecular-dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism

    Full text link
    We use {\it ab initio} molecular dynamics simulations to study a sample of liquid silica containing 3.84 wt.% H2_2O.We find that, for temperatures of 3000 K and 3500 K,water is almost exclusively dissolved as hydroxyl groups, the silica network is partially broken and static and dynamical properties of the silica network change considerably upon the addition of water.Water molecules or free O-H groups occur only at the highest temperature but are not stable and disintegrate rapidly.Structural properties of this system are compared to those of pure silica and sodium tetrasilicate melts at equivalent temperatures. These comparisons confirm the picture of a partially broken tetrahedral network in the hydrous liquid and suggest that the structure of the matrix is as much changed by the addition of water than it is by the addition of the same amount (in mole %) of sodium oxide. On larger length scales, correlations are qualitatively similar but seem to be more pronounced in the hydrous silica liquid. Finally, we study the diffusion mechanisms of the hydrogen atoms in the melt. It turns out that HOSi2_2 triclusters and SiO dangling bonds play a decisive role as intermediate states for the hydrogen diffusion.Comment: 25 pages, 18 figures. submitte

    The effect of motion direction and eccentricity on vection, VR sickness and head movements in Virtual Reality

    Get PDF
    Virtual Reality experienced through head mounted displays often leads to vection, discomfort and sway in the user. This study investigated the effect of motion direction and eccentricity on these three phenomena using optic flow patterns displayed using the Valve Index. Visual motion stimuli were presented in the centre, periphery or far periphery and moved either in-depth (back and forth) or laterally (left and right). Overall vection was stronger for motion-in-depth compared to lateral motion. Additionally, eccentricity primarily affected stimuli moving in-depth with stronger vection for more peripherally presented motion patterns compared to more central ones. Motion direction affected the various aspects of VR sickness differently and modulated the effect of eccentricity on VR sickness. For stimuli moving in-depth far peripheral presentation caused more discomfort, whereas for lateral motion the central stimuli caused more discomfort. Stimuli moving in-depth led to more head movements in the anterior-posterior direction when the entire visual field was stimulated. Observers demonstrated more head movements in the anterior-posterior direction compared to the medio-lateral direction throughout the entire experiment independent of motion direction or eccentricity of the presented moving stimulus. A correlation showed a positive relationship between dizziness and vection duration and between general discomfort and sway. Identifying where in the visual field motion presented to an individual causes the least amount of VR sickness without losing vection and presence can guide development for Virtual Reality games, training and treatment programs

    Simultaneous Localization and Antenna Calibration

    Get PDF
    Cooperative localization fills the gap in scenarios where global navigation satellite system (GNSS) reception is denied or impaired. Position and orientation information is then often provided based on signal round-trip time (RTT) and direction-of-arrival (DoA). Obtaining a meaningful RTT requires calibrated transceiver group delays, and accurate DoA estimation requires antenna calibration. Usually, such calibrations are performed once before operation. However, calibration parameters can change over time, e.g. due to varying temperature of RF components or reconfigurable antenna surroundings. To cope with that, we propose to estimate antenna responses and ranging biases simultaneously with positions and orientations by simultaneous localization and calibration (SLAC). We derive a SLAC algorithm based on Bayesian filtering, which is suitable for arbitrary antenna types. The algorithm is evaluated with measurement data from robotic rovers. We show, that ranging and DoA performance is improved considerably, leading to better position and orientation accuracy with SLAC

    Simultaneous Localization and Calibration for Cooperative Radio Navigation

    Get PDF
    Cooperative radio localization and navigation systems can be used in scenarios where the reception of global navigation satellite system (GNSS) signals is not possible or impaired. While the benefit of cooperation has been highlighted by many papers, calibration is not widely considered, but equally important in practice. Utilizing the signal propagation time requires group delay or ranging bias calibration and estimating the direction-of-arrival (DoA) requires antenna response calibration. Often, calibration parameters are determined only once before operation. However, the calibration parameters are influenced by e.g. changing temperatures of radio frequency (RF) components or changing surroundings of antennas. To cope with that, we derive a cooperative simultaneous localization and calibration (SLAC) algorithm based on Bayesian filtering, which estimates antenna responses and ranging biases simultaneously with positions and orientations. By simulations, we show that the calibration parameters can be estimated during operation without additional sensors. We further proof practical applicability of SLAC by evaluating measurement data from robotic rovers. With SLAC, both ranging and DoA estimation performance is improved, resulting in better position and orientation estimation accuracy. SLAC is thus able to provide reliable calibration and to mitigate model mismatch. Finally, we discuss open research questions and possible extensions of SLAC

    Is virtual reality sickness elicited by illusory motion affected by gender and prior video gaming experience?

    Get PDF
    Gaming using VR headsets is becoming increasingly popular; however , these displays can cause VR sickness. To investigate the effects of gender and gamer type on VR sickness motion illusions are used as stimuli, being a novel method of inducing the perception of motion whilst minimising the "accommodation vergence conflict". Females and those who do not play action games experienced more severe VR sickness symptoms compared to males and experienced action gamers. The interaction of the gender and gamer type revealed that prior video gaming experience was beneficial for females, however, for males, it did not show the same positive effects

    Activation of Sphingomyelinase-Ceramide-Pathway in COVID-19 Purposes Its Inhibition for Therapeutic Strategies

    Get PDF
    Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19
    • …
    corecore