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Abstract—Multi-mode antennas are an alternative to classical
antenna arrays, and hence a promising emerging sensor technol-
ogy for a vast variety of applications in the areas of array signal
processing and digital communications. An unsolved problem
is to describe the radiation pattern of multi-mode antennas
in closed analytic form based on calibration measurements or
on electromagnetic field (EMF) simulation data. As a solution,
we investigate two modeling methods: One is based on the
array interpolation technique (AIT), the other one on wavefield
modeling (WM). Both methods are able to accurately interpolate
quantized EMF data of a given multi-mode antenna, in our case
a planar four-port antenna developed for the 6–8.5 GHz range.
Since the modeling methods inherently depend on parameter
sets, we investigate the influence of the parameter choice on the
accuracy of both models. Furthermore, we evaluate the impact
of modeling errors for coherent maximum-likelihood direction-
of-arrival (DoA) estimation given different model parameters.
Numerical results are presented for a single polarization compo-
nent. Simulations reveal that the estimation bias introduced by
model errors is subject to the chosen model parameters. Finally,
we provide optimized sets of AIT and WM parameters for the
multi-mode antenna under investigation. With these parameter
sets, EMF data samples can be reproduced in interpolated form
with high angular resolution.

Index Terms—characteristic modes, array interpolation tech-
nique, wavefield modeling, transformation error, direction-of-
arrival, maximum-likelihood estimation.

I. INTRODUCTION

A multi-mode (MM) antenna is a physical radiator that
is capable of exciting several modes separately. Each mode
is assigned a different radiation pattern, i.e, several radiation
patterns can be emitted simultaneously. Particularly in wide-
band antenna designs each port may excite several modes
with different weights, but in narrowband designs each mode
approximately corresponds to one port.

The theory of characteristic modes (TCM) [1]–[3] is a
versatile design and analysis tool that establishes a theoretical
framework describing MM antennas, beside other antenna
types. Based on this concept, the surface current on an electric
conductor can be decomposed into a set of orthogonal compo-
nents, called characteristic modes. Each of these modes yields
a distinct radiation pattern of the electric far-field. Compared
to traditional antennas, where only the fundamental mode or a
mixture of modes are excited, an MM antenna offers properties

S. A. Alamsri, N. Doose, and P. A. Hoeher are with the Institute of Electrical
Engineering and Information Theory, Kiel University, Kiel 24143, Germany.
(e-mail: saaa, nd, ph@tf.uni-kiel.de)

R. Pöhlmann and A. Dammann are with the Institute of Communications
and Navigation, German Aerospace Center (DLR), Wessling 82234, Germany.
(e-mail: Robert.Poehlmann, Armin.Dammann@dlr.de)

of an antenna array given a single physical element. Hence,
an M -port MM antenna mimics an antenna array with M
elements.

In a special issue on the theory and applications of charac-
teristic modes published recently [4], a trend of fast-growing
interest in the field has been reported. Up-to-date publications,
see for example [5]–[11], support this trend. It was proven
in [12] for the first time that for properly designed MM
antennas the correlation is low enough to yield significant
diversity gain when the MM antenna is used for MIMO
transmission. In the remainder of this contribution, emphasis
will be on planar MM antennas exploiting a printed circuit
board as a radiator. It has been shown in [13]–[15] that
compared to linear arrays of the same size as a planar MM
antenna, less correlation exists between signals radiated from
different ports. This property in conjunction with a small
form factor and a robust structure makes this type of MM
antenna attractive for various applications. Several articles on
the performance of the MM antenna under investigation have
been published regarding communication aspects, including
[15]–[17]. In contrast, our work is dedicated to MM antennas
regarding positioning aspects. An application of the theory
of characteristic modes for positioning purposes has recently
been proposed in [18]. The authors exploit the chassis of an
airborne platform to excite characteristic modes and employ
these modes as antenna elements. Contrarily, our focus is on
modeling aspects for compact-size planar MM antennas.

Estimating the direction of arrival (DoA) of incoming
electromagnetic waves using an antenna array has been a key
technology for decades. Since the beginning of interest in
direction finding, DoA has found applications in various fields
like radar, sonar, and navigation. Being part of the array signal
processing field, DoA estimation is theoretically and practi-
cally well established and documented in literature, but is still
an active research area. Among variously proposed DoA algo-
rithms, the most important ones are maximum-likelihood tech-
niques and subspace techniques [19]. Maximum-likelihood
techniques are optimal in sense of the mean-squared error
(MSE) of the estimated DoAs [20]–[22]. On the other hand,
a drawback is the high computational complexity, because
these techniques perform a multi-dimensional search. Sub-
space methods offer improved computational efficiency. The
most popular one is the multiple signal classification (MUSIC)
technique [23]. The popularity of MUSIC comes from the fact
that it provides high resolution based on a one-dimensional
search. More computationally efficient subspace methods that
are even search-free are for example ESPRIT (estimation of
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signal parameters via rotation invariance techniques) [24] and
a variation of MUSIC called Root-MUSIC [25].

While ESPRIT and Root-MUSIC offer good performance
at low computational cost, they assume an ideal uniform
geometry of the antenna array with a well known response.
In practice, it is difficult to obtain a simple uniform geometry
with perfect manufacturing of the antenna elements and typical
mounting platforms [26]. This affects the response of the array
so it becomes different from the desired one. Hence, modeling
of antenna arrays has attracted a great amount of attention
as a solution for the DoA estimation problem with arrays of
arbitrary geometry or arrays with hardware imperfections [27].
Among the most popular modeling techniques is the array
interpolation technique (AIT) [25], [28], [29] and the wavefield
modeling (WM) technique [30]–[32]. The AIT approach aims
into linearly transform the response of the real array with
arbitrary geometry to the response of a virtual array with a
uniform geometry. On the other hand, the idea of WM is
based on modeling the received wavefield of the real array
as an orthogonal expansion to describe the response of the
real array analytically.

In previous papers by the authors, initial work on modeling
of a planar MM antenna by AIT and WM as well as the
suitability of the designed models for DoA estimation has
been published. In [33], coherent maximum-likelihood DoA
estimation has been investigated using the AIT-based model.
The response of the MM antenna has been transformed to
the response of a virtual array with heuristically chosen
parameters (e.g. geometry of the virtual array, number of
antenna elements, position of the array). In [34] and [35], the
WM-based model was applied for DoA estimation based on a
non-coherent estimator as well as a coherent one. Concerning
the WM-based mathematical model, in these publications a
fixed number of coefficients has been assumed.

In this paper, we carry out an in-depth investigation of
modeling aspects of MM antennas for DoA estimation pur-
poses. Towards this goal, we start by briefly reviving both
AIT and WM-based models. Next, we study the accuracy of
the designed models and the influence of key parameters on the
model precision. We show that with a proper set of parameters
both models approximate the MM antenna with high accuracy.
Furthermore, we analyze the influence of the investigated
parameters on the DoA estimation performance. For that
purpose we apply the maximum-likelihood technique on the
designed models, with varying parameters. Additionally, we
discuss pros and cons of both models with respect to the
choice of parameters for each model for the DoA estimation
task. Finally, we provide parameter sets that optimize the MM
antenna modeling for both AIT and WM approaches.

The following conventions and assumptions hold throughout
the paper: Numerical results are based on the four-port MM
antenna published in [14], which has been designed for mobile
terminals operating in the 6–8.5 GHz band. Further parameters
of this antenna can be found in Table I. Additionally, a 484-
port antenna has been presented in [14] for application in
access points, which assembles 121 four-port elements. The
electric field responses, obtained from the EMF simulations
of the MM prototype in [14], are utilized to calculate the gain
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Fig. 1: Gain patterns of the investigated MM antenna prototype
for right hand circular polarization. The coordinate system
under consideration is defined as well.

patterns. Fig. 1 shows the resulting gain patterns exemplarily
for right hand circular polarization (RHCP). As can be seen
in the figure, each of the four ports stimulates a different
radiation characteristic, giving M = 4 distinct modes. The
planar MM antenna is assumed to radiate only in the upper
half of the 3-D space. For simplicity, we perform the analysis
and conduct all simulations in 2-D space. The feasibility of 3-
D DoA estimation with an MM antenna was proven in [34] and
[35]. The considered coordinate system, with the MM antenna
positioned on the xy-plane at the center of the Cartesian
coordinate system is depicted in Fig. 1. We take the upper
half of the xz-plane into account, i.e., along the co-elevation
angle θ ∈ [−90◦, 90◦]. Note that the modeling methods under
investigation are applicable to arbitrary polarization compo-
nents. For reasons of conciseness, we show numerical results
for RHCP incident signals. Concerning DoA (and polarization)
estimation studies considering diversely polarized incident
signals, the interested reader is referred to [18], [36] and
references therein.

The paper is organized as follows. The modeling techniques
under investigation are introduced in Section II. Section III is
devoted to different practical aspects related to the choice of
the approximation model of the MM antenna. The influence of
modeling parameters on maximum-likelihood DoA estimation
is studied in Section IV. The applied modeling techniques
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TABLE I: Physical parameters of the considered MM antenna
[14].

Radiator dimension 30 mm × 30 mm (0.725 λ)
Center frequency 7.25 GHz
Number of ports 4
Number of coupling elements 8
Feed concept Direct coupling
Feed network Tri-plate transmission line

and results of the DoA estimation are discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. MULTI-MODE ANTENNA MODELS

Given the fact that an MM antenna is considered to be an
antenna array of arbitrary structure, it is important to find a
suitable modeling strategy. A model enables the application
of various computationally efficient array signal processing
techniques, like for DoA estimation. For this purpose, the
designed model should be able to bear the response of the
mth port

am(θ) =
√
gm(θ)ejΦm(θ) (1)

for any angle θ, where gm(θ) is the antenna gain and Φm(θ)
is the antenna phase response [37]. We suggest two different
modeling techniques. Based on the AIT [28], the first method
designs a model that interpolates the radiation characteristics
of the MM antenna by means of a virtual array. The second
method exploits wavefield modeling [30]–[32] in order to
design a mathematical model that describes the response of the
MM antenna. Both techniques are able to inherently interpolate
spatially quantized (measured or simulated) EMF data, so the
response of the MM antenna can be calculated at any arbitrary
angle. In the following, we adopt the electric field samples
from EMF simulations of an MM antenna [14] for constructing
both models. The available samples are sparsely stored with a
step size of 5◦ in both azimuth and elevation.

A. AIT-based Model

The AIT maps the response of an arbitrarily structured
array to the response of a virtual uniform array. The principle
was first introduced by Bronez [29] to overcome hardware
limitations and imperfections, since it is challenging to obtain
the desired response of a theoretical uniform array from a
real life uniform array. His work has been later extended
by Friedlander [28] and Pesavento et al. [38]. The model
we design is inspired by the AIT concept introduced by
Friedlander [28]. In his work, Friedlander divided the field of
view (FoV) into preliminarily defined sectors. Next he linearly
transformed the response of the arbitrary array to the response
of a virtual uniform linear array within each sector. Hence, a
set of mapping coefficients could be found for each sector.
Finally, the output of the linear array could be transformed
into the output of the arbitrary array by means of the mapping
coefficients.

The model we design here, in contrast to conventional AIT,
aims to transform the response of a virtual uniform linear array

(ULA) to the response of the MM antenna. Towards this goal
we first define the set of P angles, at which the electric field
response of the MM antenna prototype is given from EMF
simulation data [14] as ϑ = [ϑ1, ϑ2, . . . , ϑP ]. Next we arrange
the complex electric field responses of M ports to a source
located at angle p in the vector

ε(ϑp) = [ε1(ϑp), ε2(ϑp), . . . , εM (ϑp)]
T, (2)

where ε(ϑp) ∈ CM×1 and (·)T denotes the transpose. Orga-
nizing the response vectors in a matrix leads to

E(ϑ) = [ε(ϑ1), ε(ϑ2), . . . , ε(ϑP )], (3)

where E(ϑ) ∈ CM×P contains in each column the complex
electric field response of each of the M ports to a signal
arriving from angle ϑp. The spatial resolution of the given
samples should be sufficiently dense, albeit interpolation is
performed inherently by AIT or WM processing.

Now we take a look at the array steering matrix of the
virtual ULA. The array steering vector av(ϑp) ∈ CN×1 of
the virtual ULA at angle ϑp can be in general written as

av(ϑp) = [ejk(x1 sinϑp+z1 cosϑp), . . . , ejk(xN sinϑp+zN cosϑp)]T,
(4)

where k is the wavenumber and xn and zn are the coordinates
of the nth antenna element in the xz-plane. Hence the array
steering matrix Av(ϑ) ∈ CN×P of the virtual ULA can be
expressed as

Av(ϑ) = [av(ϑ1),av(ϑ2), . . . ,av(ϑP )]. (5)

Similar to E(ϑ), Av(ϑ) contains in each column the response
of the elements of the virtual ULA to a signal arriving from
angle ϑp. The next step is to divide the FoV (ϑ ∈ [−90◦, 90◦])
into L sectors of equal sizes. This is necessary because no
Av(ϑ) can be found for the whole FoV so that the approxima-
tion is sufficiently accurate. Evidence is given in Fig. 12. Each
sector contains Pl angular samples ϑl = [ϑ

(l)
1 , ϑ

(l)
2 , . . . , ϑ

(l)
Pl

].
The array steering matrix of the virtual ULA over the lth sector
can be expressed as

Av(ϑl) = [av(ϑ
(l)
1 ),av(ϑ

(l)
2 ), . . . ,av(ϑ

(l)
Pl

)] ⊂ Av(ϑ), (6)

and the electric field responses of the MM antenna over the
same sector as

E(ϑl) = [ε(ϑ
(l)
1 ), ε(ϑ

(l)
2 ), . . . , ε(ϑ

(l)
Pl

)] ⊂ E(ϑ). (7)

The problem of finding the mapping coefficients can be solved
sector-wise. We minimize the sum of the quadratic errors
between the desired response and the interpolated response.
This can be described by

Ĝl = arg min
G̃l

∥∥∥G̃H
l Av(ϑl)−E(ϑl)

∥∥∥2

F
, (8)

where Gl ∈ CN×M is the mapping coefficient matrix corre-
sponding to the sector l, Av(ϑl) ∈ CN×Pl , and E(ϑl) ∈
CM×Pl . Throughout this paper, (̃·) denotes a hypothesis,
(·)H denotes the Hermitian transpose and || · ||F denotes the
Frobenius norm. It can be seen from (8) that the optimal set
of mapping coefficients is obtained by minimizing the squared
Frobenius norm with respect to the mapping coefficients, while
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the virtual ULA parameters (e.g. number of antenna elements,
orientation of the array and interelement spacing) are assumed
to be given. The choice of the latter parameters is discussed
in Section III. The solution of problem (8) is known as the
least squares solution

Ĝl =
(
Av(ϑl)A

H
v (ϑl)

)−1
Av(ϑl)E

H(ϑl), (9)

where (·)−1 denotes the matrix inverse. This solution was
found by taking the electric field responses of the MM antenna
and the corresponding virtual ULA array steering vectors at
the angles ϑ. After calculating the mapping matrices Gl for
each sector, the array steering matrix of the virtual ULA can
be transformed to the interpolated MM antenna response at
any set of angles θl within sector l according to

A(θl) = GH
l Av(θl). (10)

For finding the interpolated MM antenna response over the
whole FoV (θ ∈ [−90◦, 90◦]), the responses A(θl) from
each sector are concatenated. The model design is performed
only once for a given MM antenna and certain virtual ULA
parameters. The calculation of mapping coefficients for each
sector can be performed offline and applied to map the virtual
ULA response to the MM antenna response.

B. WM-based Model

The introduction of WM dates back to Doron et al. [30].
In this paper we only provide a very brief introduction, for
the details please refer to [30], [39]. The general idea is to
decompose the antenna response vector

a(θ) = HΨ(θ) ∈ CM×1 (11)

as the product of a sampling matrix H ∈ CM×U and a basis
vector Ψ(θ) ∈ CU×1, where θ ∈ [−90◦, 90◦] is the DoA.
The sampling matrix is completely independent of the received
wavefield, i.e. the DoA of the signal. The basis vector, on the
other hand, is independent of the employed antenna. Different
choices for the basis functions exist, keeping in mind that they
have to be orthonormal on the respective manifold, i.e. θ ∈
[−180◦, 180◦). A natural choice in this case are the Fourier
functions

[Ψ(θ)]u =
1√
2π
ejuθ (12)

with the integer u =
⌊
−U−1

2

⌋
, ...,

⌊
U−1

2

⌋
, as they fulfill the

orthonormality requirement. The notation [·]i refers to the i-th
element of a vector, [·]i,j refers to the element in row i and
column j of a matrix. From theory [30] it is known that the
magnitude of the elements of H decays superexponentially
for increasing u beyond |u| = kr, where k is the angular
wavenumber and r the radius of the smallest sphere enclosing
the antenna. Therefore a finite number of coefficients U is
sufficient to allow an accurate representation of the antenna
pattern. In (11) spatial sampling is defined as a linear oper-
ation. The sampling matrix H can thus be found by least
squares

Ĥ = E(ϑ)Ψ(ϑ)H
(
Ψ(ϑ)Ψ(ϑ)H

)−1
. (13)
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Fig. 2: Gain patterns of the investigated MM antenna and
the interpolated patterns exploiting both proposed models in
the xz-plane. The crosses represent the sampled gain patterns
of the MM antenna prototype. Solid lines represent the gain
patterns of the AIT-based model. Dashed lines represent the
gain patterns of the WM-based model.

Once H is found, the interpolation can be performed by (11).
For P signals, arriving from angles θ1, ..., θP , the antenna
response matrix can be composed as

A(θ) = [a(θ1), ...,a(θP )]. (14)

C. Antenna Characteristics

The xz-plane cut of the gain patterns of the investigated
MM antenna prototype as well as the interpolated gain patterns
according to the proposed models are plotted in Fig. 2. The
simulated EMF samples at angular 5◦ steps are plotted as
crosses. The interpolated gain patterns of the AIT-based model
are plotted as solid lines while the gain patterns of the WM-
based model are plotted as dashed lines. For the AIT-based
model a virtual ULA of N = 4 elements was positioned
on the z axis with an interelement spacing of λ/4, where
λ is the operating wavelength. The mapping coefficients were
calculated for a 30◦ sector size. When we divide the FoV
into sectors we introduce an overlap between adjacent sectors,
i.e. neighboring sectors share regions of angular samples. This
improves the mapping process and allows the choice of larger
sector sizes. The overlap size taken in Fig. 2 is 15◦. Section III
discusses the chosen virtual ULA parameters as well as the
sector and overlap sizes, in addition to their impact on the
designed model. The WM-based model was designed using
Fourier functions (12). U = 13 was taken to achieve precise
interpolation, since the EMF simulation data used for the
analysis is quasi noise free. U could be reduced to match the
noise floor, in case the data would have been obtained from
anechoic chamber calibrations. Both models can interpolate
the MM antenna simulation data very well.

III. PRACTICAL ASPECTS

In this section, we study the effect of the virtual ULA
design on the quality of the AIT-based model, as well as the
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effect of the number of coefficients on the quality of the WM-
based model. It is known, generally, that errors introduced by
various mapping techniques lead to errors in DoA estimations
[27]. Accordingly, it is important to carefully design the
corresponding model to obtain an accurate mapping of the
MM antenna.

A. Practical Aspects of the AIT-based Model

The design of the virtual array by AIT mapping has been
an interesting research topic since its introduction by Bronez
[29]. Questions like the optimal number of virtual antenna
elements, interelement spacing, and orientation of the virtual
ULA are a subject of interest. Friedlander in [28] chose the
virtual array as a “rule of thumb” to have elements that
are close to the elements of the real array, and a virtual
aperture approximately equal to the aperture of the real array.
Bühren et al. [40] studied the relation between virtual array
geometry and mapping errors. Beside the design of the virtual
array, the sector size for the sector-wise interpolation is a
crucial parameter. On the one hand, large sector sizes are
desirable for minimum computational effort. On the other
hand, the interpolation performs poorly for large sector sizes.
As suggested in [28], a sector size of 30◦ is commonly used.

In the following, we analyze the influence of the num-
ber of virtual elements, their arrangement (orientation and
interelement spacing), and the size of sectors and overlaps
of the virtual ULA. For the analysis, we take two criteria for
assessing the quality of the designed model into account. The
first criterion is the average transformation error given by

ξ(ϑl) =

∥∥GH
l Av(ϑl)−E(ϑl)

∥∥
F

‖E(ϑl)‖F
. (15)

Notice that ξ is calculated over all angular samples of the MM
antenna at angles ϑl within sector l. In the remainder of the
paper, we drop the word average, and call ξ the transformation
error for simplicity. For an accurate model design the transfor-
mation error should be kept on the order of 10−3 or smaller
[28]. The second criterion is to obtain a smooth progression of
the interpolated pattern. The interpolated gain patterns should
not exhibit discontinuities in the sense of rapid variations in a
small region, because the original gain patterns illustrated in
Fig. 1 do not feature such artifacts. It is fair to say that for the
analysis of the virtual ULA parameters the second criterion
holds, but becomes crucial for the analysis of the influence of
the FoV sectorization. We accept the designed model when
both criteria are fulfilled. A fairly accurate design was found
taking the parameters given in Section II-C. Therefore, in
each of the following sections, we alter the parameter being
studied in the respective section while keeping the remaining
parameters fixed according to the values in Section II-C.

1) Influence of the Orientation of the Virtual ULA: Initially,
we place the virtual ULA on the x axis where it shares centers
with the MM antenna on the center of the Cartesian coordinate
system, as depicted in Fig. 3a. Next, we place the virtual ULA
on the z axis where it again shares centers with the MM
antenna on the center of the Cartesian coordinate system, as

x

z

φ

θ

d

y

(a) Virtual ULA along x axis
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θ

d
y

(b) Virtual ULA along z axis

Fig. 3: Positioning of the virtual ULA (a) on the x axis and
(b) on the z axis.

depicted in Fig. 3b. The array steering vector at arbitrary angle
θ in the first case can be written as

av,x(θ) = [ejkx1 sin θ, . . . , ejkxN sin θ]T. (16)

After using this array steering vector to construct the array
steering matrix and to perform the mapping, we get the gain
patterns plotted in Fig. 4. The figure shows that the model has
difficulties matching the sampled pattern of the MM antenna
for |θ| > 75◦ (highlighted area), i.e. in the end-fire direction of
the virtual ULA. This particularly influences the interpolation
of mode patterns 2 and 4 whose angular samples are not
modeled well in the mentioned region.

Similarly, when the virtual ULA is positioned along the z
axis, see Fig. 3b, the array steering vector at arbitrary angle θ
can be written as

av,z(θ) = [ejkz1 cos θ, . . . , ejkzN cos θ]T. (17)

The resulting gain patterns are shown in Fig. 5. Like the case
when the virtual ULA was positioned on the x axis, the model
faces difficulties in the end-fire direction of the virtual ULA,
i.e. for |θ| < 15◦ (highlighted area). However, Fig. 5 indicates
that the interpolation of modes 1 and 2 performs well, unlike
mode 3 where the interpolation does not fit the corresponding
angular samples well in the mentioned region. This can be
explained by the behavior of the considered modes. First and
second modes in the region |θ| < 15◦ exhibit only a slight
change in the progression of the pattern so the interpolation
does not face problems to fit the angular samples. On the other
hand, mode 3, in the same region, is dropping with a sharp
slope towards null. Hence, the model performs better when
the virtual array is positioned on the z axis rather than on the
x axis. These results are also confirmed by the transformation
error (15). Taking the mean of the transformation error over
all sectors yields ξmean,x = 9.5 · 10−3 for the virtual ULA
positioned on the x axis, and ξmean,z = 1.6 · 10−3 for the
virtual ULA positioned on the z axis, see Fig. 6. The mean
errors differ by almost one order of magnitude. Therefore, the
model with the virtual array on the z axis should be preferred.
However, when the precision of the model in the broadside
direction is more relevant than the precision in the end-fire
direction, the other orientation may be chosen. It is generally
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Fig. 4: Gain patterns of the investigated MM antenna (crosses)
and the interpolated patterns (solid lines) in xz-plane. The
virtual ULA is positioned on the x axis. The bottom figure is
a zoom of the highlighted area of the top part.

possible to align the virtual ULA between the x axis and the z
axis. But from our experience, it is advantageous if the virtual
ULA is either set on the x axis or the z axis, respectively.
Otherwise, we risk that the second criterion is violated. Hence,
orientations between the x and the z axis are discarded.

2) Influence of the Interelement Spacing: It is known from
AIT literature that the virtual array elements are preferably
placed as close as possible to the real array elements [28],
[40]. In the case of an MM antenna, the planar radiator itself
represents all antenna elements. Hence, smaller mapping errors
can be expected when the virtual elements are close to the
MM antenna structure. Fig. 6 shows the transformation error
versus the interelement spacing varying between d = 0.1λ
and d = 0.5λ for both orientations. The transformation error
is almost constant for the interelement spacing under consider-
ation. Note that d < 0.5λ does not cause any mutual coupling
because d refers to a virtual array, i.e., a mathematical model.
Taking into account the size of the investigated prototype to
be 0.725λ × 0.725λ at fc = 7.25 GHz, it becomes clear
that a change of the spacing from d = 0.1λ to d = 0.5λ
is relatively small compared to the area of the MM antenna.
An interelement spacing d > 0.5λ was not considered in order
to avoid spatial aliasing [41].

3) Influence of the Number of Antenna Elements: In order
to investigate the impact of the chosen number of virtual
antenna elements, the transformation error is plotted versus
an increasing number of virtual elements in Fig. 7. Starting
with the setting shown in Fig. 3b, in each step two new virtual
elements along the z axis are added and the transformation
error is calculated. The error curve implies that a better
interpolation accuracy is obtained with increasing number of
elements. This is expected since a larger number of elements
results in more degrees of freedom for the mapping matrix.
However, after a certain number of virtual elements (about

90◦

60◦

30◦
0◦

−30◦

−60◦

−90◦

−15 −10 −5 0 5Gain pattern in dB

θ◦

Port 1 Port 2 Port 3 Port 4

90◦

60◦

30◦
0◦

−30◦

−60◦

−90◦

−15 −10 −5 0 5Gain pattern in dB

θ◦

Port 1 Port 2 Port 3 Port 4

Fig. 5: Gain patterns of the investigated MM antenna (crosses)
and the interpolated patterns (solid lines) in the xz-plane. The
virtual ULA is positioned on the z axis. The bottom figure is
a zoom of the highlighted area of the top part.
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Fig. 6: Transformation error versus interelement spacing.

N = 10), taking more elements into account does not further
reduce the transformation error. This is due to the fact that
additional elements move away from the structure of the
real MM antenna and do not significantly contribute to the
interpolation. As a result, the mapping coefficients associated
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with these elements have much smaller values compared to the
coefficients of the virtual elements closer to the MM antenna.
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Fig. 7: Transformation error versus number of virtual antenna
elements.

As can be seen from (8), each row of the mapping coeffi-
cient matrix contains the mapping coefficients that correspond
to a virtual element, while each column contains the mapping
coefficients that correspond to a mode of the MM antenna.
This leads, in case of interpolation with a large number of
virtual elements, to rows with very small coefficients in the
mapping matrix. As a result, the mapping matrix could become
ill-conditioned, which is likely to cause a large bias of the
DoA estimates [42]. Fig. 7 proves that the designed model
with N = M = 4 virtual elements already achieves a quite
good transformation.

4) Influence of the Sector and Overlap Size: In the classical
AIT algorithm [28], the interpolation sector size is chosen
heuristically. If the designed model achieves an error in the
accepted order, the current design is kept. Otherwise, a smaller
sector size is taken until an acceptable error is obtained. A
sector size of 30◦ is common in the literature to achieve an
accurate transformation. However, studies concerning interpo-
lation techniques using larger sector sizes can be found in
[43] and [44]. With the mentioned sector size, we obtain an
error that fulfills the first criterion, but violates the second.
The designed models have difficulties to obtain a smooth
interpolation between the sparsely sampled patterns of the MM
antenna. For a sector size of 5◦, i.e. for 36 sectors, the model
achieves good results.

To enable larger sectors (and hence a lower computational
complexity) while keeping an acceptable transformation error
and a smooth progression of the interpolated pattern, we
propose the concept of overlapping sectors. For example,
consider a sector s1 = [0◦, 30◦] and the neighboring sector
s2 = [15◦, 45◦]. Then, the overlap region is sov = [15◦, 30◦].
Given this example, the entire FoV can be divided into just 11
sectors rather than 36 sectors as the classical AIT algorithm
suggests. After calculating the mapping coefficients for s1 and

90◦

60◦

30◦
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−30◦

−60◦

−90◦

−15 −10 −5 0 5Gain pattern in dB

θ◦

Overlap 15◦ Overlap 5◦ No overlap

Fig. 8: Interpolated gain pattern for different overlap sizes in
the xz-plane. The dashed lines represent the interpolation with
15◦ overlap size. The solid lines of modes 1 and 2 represent
the interpolation of those modes with 5◦ overlap size, while
the solid lines of modes 3 and 4 represent the interpolation of
those modes without overlaps.

s2 according to (8), we end up with two coefficient matrices
G1 and G2 for the overlap region sov . The optimal coefficient
matrix for the overlap region, Ĝov , is chosen such that the
interpolation error is minimized according to

Ĝov = arg min
{G̃ov∈G}

{∑
Pov

(G̃H
ovav(ϑpov )− ε(ϑpov ))2

}
,

(18)
where the columns of G̃ov are taken independently either
from G1 or G2. Furthermore, ϑpov is an angular sample in
the overlap region and Pov is the number of angular samples
in this region. Remember that av(ϑpov ) and ε(ϑpov ) are the
virtual ULA array steering vector and electric field response of
the MM antenna at angle ϑpov , respectively. Notice that no new
coefficients are calculated for the overlap regions; rather the
best fitting coefficients are chosen from neighboring sectors.

A design with 30◦ sector size and 15◦ overlap size (i.e.
yielding 11 sectors) obtains a fairly good model accuracy; see
Fig. 2. To visualize the impact of an insufficient overlap size,
Fig. 8 includes interpolated gain patterns for different modes
using smaller overlap. Dashed lines depict the interpolation
with 15◦ for comparison. Solid lines illustrate an overlap of
5◦ for modes 1 and 2 and no overlap for modes 3 and 4,
respectively. As indicated by the figure, for 5◦ overlap the
model is not accurate in the region |θ| < 15◦ for modes 1
and 2. The same applies for modeling without overlap in the
region 15◦ < |θ| < 30◦ for modes 3 and 4.

B. Practical Aspects of the WM-based Model
1) Influence of the Number of Coefficients: For the WM

approach introduced in Section II-B, a critical design param-
eter is the number of Fourier coefficients, i.e. basis functions,
U . The approximation error of the antenna characteristic is
defined analogously to (15) as

ξ(ϑ) =
‖HΨ(ϑ)−E(ϑ)‖F

‖E(ϑ)‖F
. (19)
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Fig. 9: Approximation error versus number of coefficients
U for wavefield modeling. Beyond U = 26 the coefficient
magnitude decays superexponentially.

Fig. 9 shows the approximation error versus the number of
Fourier coefficients. It can be seen that by increasing the num-
ber of coefficients, the approximation error becomes smaller.
For U < 19 the error drops fast, whereas for 19 ≥ U ≥ 35 the
increase in approximation accuracy is significantly smaller.

IV. MODEL-BASED DOA ESTIMATION

In this section, we apply maximum-likelihood-based DoA
estimation to both antenna models and study the influence
of the choice of parameters on the DoA root mean squared
error (RMSE). First, we start with the considered signal model.
Assuming that Q < M narrowband signals [45] arriving from
angles θ = [θ1, ..., θq], one snapshot of the output signal y ∈
CN×1 can be expressed as

y(k) = A(θ)x(k) + n(k), k = 1, . . . ,K, (20)

where K is the number of snapshots, A(θ) ∈ CM×Q is the
antenna response, x(k) ∈ CQ×1 is the signal vector arriving
from angles θ, and n(k) ∈ CM×1 is a complex valued zero
mean Gaussian distributed white noise process with variance
σ2 and covariance matrix σ2I. The array steering vectors in
A(θ) are assumed to be linearly independent [46], and the
number of sources Q is assumed to be known [47]. The case of
an unknown number of sources has been studied in [48]. Given
the observations y(k), we estimate the angles θ = [θ1, ..., θq]
of the Q sources, based on the maximum-likelihood estimator
presented in [46].

The joint probability density function of the K observations
can be written as

p(y(1), . . . ,y(K)) =
K∏
k=1

1

π det[σ2I]

· exp

(
− 1

σ2
‖y(k)−A(θ)x(k)‖2

)
, (21)

where det[·] denotes the determinant. After neglecting the
constant terms, the log-likelihood function becomes

L = K log σ2 − 1

σ2

K∑
k=1

‖y(k)−A(θ)x(k)‖2 . (22)

Next, the maximization of the log-likelihood function with
respect to the unknown parameters θ and x(k) leads to the
following multi-variate minimization problem:

[θ̂, x̂(k)] = arg min
θ̃,x̃(k)

{
K∑
k=1

∥∥∥y(k)−A(θ̃)x̃(k)
∥∥∥2
}
. (23)

Assuming (for the time being) the angles θ to be known, the
least squares solution with respect to x(1), . . . ,x(K) can be
expressed by

x̂(k) =
(
A(θ)AH(θ)

)−1
A(θ)Hy(k). (24)

Substituting (24) into (23) yields the following minimization
problem:

θ̂ = arg min
θ̃

{
K∑
k=1

∥∥∥y(k)−ΠA(θ̃)y(k)
∥∥∥2
}
, (25)

where ΠA(θ) is the projection matrix onto the space spanned
by the vectors of A(θ):

ΠA(θ) = A(θ)A†(θ) = A(θ)
(
A(θ)AH(θ)

)−1
A(θ)H.

(26)
The projection matrix of the orthogonal complement of the
column space of A(θ) is by definition

Π⊥A(θ)
∆
= I−ΠA(θ). (27)

Therefore, after substituting (27) into (25) and exploiting the
trace operator, tr(·), the angle estimates can be rewritten as

θ̂ = arg min
θ̃

K∑
k=1

tr[Π⊥
A(θ̃)

y(k)y(k)H]. (28)

Finally, by defining the sample covariance matrix as

R̂ =
1

K

K∑
k=1

y(k)y(k)H, (29)

the minimization problem (28) can be formulated as

θ̂ = arg min
θ̃

K∑
k=1

tr[Π⊥
A(θ̃)

R̂]. (30)

After having defined the signal model and the considered
maximum-likelihood estimator, we perform numerical simu-
lations to verify the influence of different parameters of both
models on RMSE of the DoA estimates. For providing a
fair comparison, in the following simulations the received
signal y(k) in (20) was generated using the quantized EMF
data, while the estimator in (23) employs either the AIT-
based model, see Section II-A, or the WM-based model, see
Sec II-B. Each of the numerical simulations is performed with
K = 1000 snapshots and

RMSE(θ) =

√√√√ 1

NMCr

NMCr∑
nMCr=1

(θ̂MCr − θ)2, (31)
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where NMCr = 1000 Monte Carlo runs have been conducted
at SNR = 20 dB, unless stated otherwise. Afterwards, the
mean of the estimated DoA RMSE is calculated over θ ∈
[−90◦, 90◦]. The parameters for the following analysis are
those given in Section II-C. The parameter under investigation
in the respective section will be altered, while the remaining
parameters will be fixed.

A. RMSE versus Number of Antenna Elements

To study the impact of the number of virtual elements on the
DoA estimation, the RMSE of the estimates versus the number
of virtual elements is shown in Fig. 10. As expected, a larger
number of virtual elements delivers better DoA estimates since
the transformation error decreases, see Fig. 7. However, after
a certain number of virtual elements (about N = 10), there
will not be any significant improvement. This result coincides
with the results shown in Fig. 7, where it is clear that more
elements do not reduce the transformation error.
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Fig. 10: RMSE versus number of virtual antenna elements.

B. RMSE versus Orientation of the Virtual ULA

Results of numerical simulations for a virtual array placed
along the x axis and z axis for different interelement spacing
are given in Fig. 11. As the interelement spacing between
d = 0.1λ and d = 0.5λ does not much affect the transforma-
tion error, see Section III-A2, the RMSE change with respect
to interelement spacing is also insignificant. The interesting
observation in Fig. 11 is that the model with the virtual array
along the x axis obtains, on average, smaller RMSE than the
model with virtual array along the z axis, despite the fact
that the transformation error in the first case is larger than in
the second case. The explanation can be found in Fig. 4 and
Fig. 5. In the case of positioning the virtual array on the x axis,
the transformation error in the |θ| > 75◦ region is associated
with low gain for all modes. In the case of positioning the
virtual array on the z axis, the transformation error in the
|θ| < 15◦ region is associated with high gain for modes 1 and
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Fig. 11: RMSE versus interelement spacing of virtual antenna
elements.
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Fig. 12: RMSE versus sector size.

2. Therefore, the impact of the transformation error on the
estimator in the mentioned region becomes larger. However,
the RMSE difference between both models is in order of 10−2,
which is insignificant for a DoA RMSE in the order of 10−1.

C. RMSE versus Sectorization and Overlapping Size

The influence of the chosen sector and overlap size is
analyzed by considering different sector sizes, each with 50%
overlap, except for the sector size of 5◦ where the overlap
is 0◦. Results are depicted in Fig. 12. It can be verified
from the figure that the DoA RMSE increases with increasing
sector size. As the designed model for small sector sizes up
to 30◦ fulfills both quality criteria defined in Section III-A,
the estimator performs well. For larger sector sizes the model
violates the quality criteria introducing a rapid increase in DoA
RMSE.
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Fig. 13: DoA estimation RMSE averaged over θ for SNR =
0, 10, 20 dB versus number of coefficients U for wavefield
modeling.

D. RMSE versus Number of Coefficients for Wavefield Mod-
eling

With Fig. 13 we want to answer the question of how many
Fourier coefficients are necessary in practice for the WM
approach introduced in Section III-B1. Again, the received
signals are generated based on the original EMF simulation
data with 5◦ grid and the estimator employs the WM-based
model with a different number of coefficients U , see (12). As
the Fourier functions in (12) are symmetric around 0, only odd
numbers of coefficients U are used. The plot shows that for
U < 13, a model mismatch causes an increased RMSE. This
model mismatch becomes more severe the less coefficients are
used. For U > 13, increasing the number of coefficients does
not reduced the RMSE. Apparently with U = 13 the model is
good enough even for SNR = 20 dB, such that the estimation
accuracy is limited by the noise instead of the model.

V. DISCUSSION

For the purpose of modeling an MM antenna we have
studied the array interpolation technique and the waveform
modeling technique. The first method models the MM antenna
as a virtual ULA, whereas the second method describes the
response of the MM antenna based on a mathematical model.
While both methods are able to model the MM antenna well,
each method has pros and cons. The AIT-based model is more
intuitive. It offers the possibility to apply computationally
efficient DoA methods like ESPRIT [24] and Root-MUSIC
[25]. Nevertheless, this method suffers from highly correlated
signals outside the considered sector, which leads to a degra-
dation of the DoA estimates [49]. The WM-based method can
model the MM antenna response over the whole FoV without
sectorization, but can only be applied to DoA estimators of
higher complexity.

The accuracy of an MM antenna model, either based on
AIT or WM, has been shown to depend on the choice of

parameters of the respective model. In the case of AIT, the
option of placing a virtual ULA with four virtual elements
on the z axis, given a interelement spacing of λ/4, a sector
size of 30◦, and an overlap size of 15◦, provides a good
approximation. For these parameters, a set of eleven mapping
coefficient matrices, each of size 4 × 4, is obtained. These
matrices are delivered in the appendix. Given these matrices,
the 2-D antenna characteristics of all four modes of the
MM prototype under investigation can be reproduced by the
community in interpolated form with high angular resolution,
without having access to EMF data samples. In the case of
WM, when choosing the Fourier functions in (12) as basis
functions, U = 13 Fourier coefficients for each port are
sufficient to obtain a good approximation. The corresponding
parameters are delivered in the appendix as well.

An analysis of DoA performance utilizing a maximum-
likelihood DoA estimator has revealed the dependency of the
RMSE on the accuracy of the designed antenna model. In
general, transformation errors are biasing the DoA estimates.
The bias introduced by the AIT-based model strongly depends
on the sectorization. A wrong choice of the sector size
increases the RMSE severely, while the bias resulting from
parameters of the virtual array still obtains acceptable accuracy
in terms of the RMSE. On the other hand, the accuracy
of the WM-based model improves with increasing number
of coefficients U . Beyond U = 13 coefficients the RMSE
does not improve significantly. The WM-based model achieves
smaller RMSE values at high SNR values, because for the AIT-
based model it is known that at high SNRs the impact of the
transformation error may be larger than that of the noise [50].
The studied and discussed parameters of the AIT and WM-
based models to obtain minimum RMSE apply to the MM
antenna prototype introduced in [14]. However, the presented
guidelines for choosing those parameters are also valid for
MM antennas having a different number of modes. For the
AIT-based model, parameters such as number of elements
and interelement spacing of the virtual array are less critical
than the orientation of the virtual array and the sectorization.
The latter two parameters depend on the radiation patterns of
the considered modes. For the WM-based model, the number
of coefficients depends on the electrical size of the antenna
[30]. For an MM antenna with a different number of modes

but the same electrical size, the same number of coefficients
can be used. Moreover, in analogy to increasing the number
of antenna elements of a conventional antenna array, having
more modes would improve the performance of the maximum-
likelihood estimator of the DoA. However, care should be
taken in this case to insure a sufficiently small correlation
between the modes.

VI. CONCLUSION

In the areas of array signal processing and digital communi-
cations, a huge amount of results are available for uniformly-
spaced antenna arrays. Although multi-mode antennas are of
increasing interest because they mimic antenna arrays, this
antenna type is arbitrary and currently not well modeled
from a signal processing/communications point of view. As
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a solution, we adopt two modeling methods to multi-mode
antennas: The array interpolation technique and wavefield
modeling. Consequently, for the purpose of signal processing
one could replace the multi-mode antenna by the virtual
antenna. The wavefield modeling method is conceptually
similar with a higher degree of abstraction. Both models
are able to interpolate the given antenna pattern. This is an
important practical feature because electromagnetic field data
is frequently available only in spatially quantized form. As a
possible application, both modeling concepts are applied to
coherent maximum-likelihood direction-of-arrival estimation.
The impact of parameter sets and modeling errors are studied
and compared. Finally, optimized parameter sets are provided.
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APPENDIX A
AIT MAPPING COEFFICIENTS

According to the AIT-based model introduced in Section II-A and the results in Section III-A, the investigated M = 4 port
MM antenna is modeled by a virtual ULA of N = 4 elements along the z axis with interelement spacing d = λ/4. A 30◦

sector size with 15◦ overlap size is considered. This results in L = 11 sectors. In the following, we provide the corresponding
mapping coefficient matrices Gl ∈ CN×M :

G1 =


−0.3379929− 0.02271694i −1.42895 + 1.202409i −0.9751865− 0.3748656i −0.492186 + 0.5581889i

0.4176824− 1.154261i 1.967421− 2.31803i 1.625532 + 0.1412085i 0.2301585− 0.6351565i
0.3223047 + 2.440937i −2.122732 + 2.68573i −0.336772 + 0.6634518i −0.2600317 + 0.7019622i
−0.3296267− 1.199872i 1.669175− 1.511143i −0.3515941− 0.5677777i 0.5343497− 0.6326347i



G2 =


−0.5257688− 0.2182654i −1.491053 + 0.5900567i −1.825524 + 0.00023299i −0.4804487 + 0.2481393i

1.259226− 0.9855009i 3.160347− 0.860535i 3.039504− 2.184621i 0.7197898 + 0.1457578i
−0.5164995 + 2.803788i −3.980786 + 2.111863i −0.1668957 + 3.351573i −1.107282 + 0.3307682i
−0.1562431− 1.477924i 2.319373− 1.702403i −0.9127693− 1.272015i 0.8426109− 0.6902792i



G3 =


0.2355258− 0.966885i −0.07919153 + 1.1492i −3.819897 + 0.2823089i −0.2614507− 0.1482683i
1.751606 + 2.164831i −0.6700898 + 1.642975i 5.824912− 7.471549i 1.281117 + 1.35567i
−3.378592 + 1.361043i −3.812815− 2.525889i 2.48541 + 8.6982i −2.404057 + 0.07166003i
0.8047454− 1.980577i 3.579044− 0.7417844i −2.892205− 1.601538i 1.167957− 0.9885241i



G4 =


2.229434− 1.579864i 1.498453 + 4.051515i −10.61997− 2.782043i −0.125851− 2.746992i
1.461651 + 8.369543i −10.40638 + 3.099267i 21.04782− 23.75545i 8.472205 + 4.167886i
−9.11039− 1.005892i −1.850187− 12.16477i 13.01172 + 28.40181i −7.314702 + 5.981984i
2.199137− 3.518214i 6.388087 + 0.9812878i −10.30044− 0.3892399i −0.1883448− 3.165292i



G5 =


22.54393− 6.21377i 21.10923 + 5.911715i −149.361− 150.026i 21.91906− 90.69182i

7.309108 + 70.42268i −23.36855 + 60.32424i 511.5459− 379.0759i 261.0971 + 103.3414i
−71.35295− 3.269566i −56.67663− 32.23264i 302.445 + 560.5287i −138.0371 + 243.8143i

5.6482− 24.02199i 15.33167− 16.24202i −199.0336 + 72.6838i −73.38952− 56.65479i



G6 =


2.566821− 2.167523i −2.216303 + 11.71209i 0.272016− 0.064465i −0.1733718 + 0.06848533i
3.905379 + 8.974951i −31.26493− 10.59543i 0.176097 + 0.694365i 0.01236176− 0.4497193i
−9.801546 + 2.145884i 13.70103− 30.85554i −0.684591 + 0.155507i 0.3838582 + 0.1305691i
0.8692102− 3.941048i 11.85216 + 6.540964i −0.0337077− 0.252317i −0.04299996 + 0.09484828i



G7 =


−17.58397 + 4.597868i −20.80397 + 11.14517i 149.5724 + 150.1123i −22.21876 + 90.8226i
−7.569878− 53.19476i −20.59792− 66.47453i −511.8159 + 379.4558i −261.0655− 104.1034i
52.66765− 0.4211724i 68.2275− 11.48275i −302.7949− 560.8167i 138.6718− 243.5577i
−1.280433 + 16.5098i 2.572562 + 23.77483i 199.158− 72.84539i 73.30874 + 56.80175i



G8 =


0.4377447− 0.4678576i −0.1257663 + 5.391872i 10.7628 + 2.832154i −0.07823439 + 2.886467i
0.6393967 + 2.282524i −11.53063− 2.535386i −21.17842 + 23.95025i −8.511159− 4.650072i
−3.448172 + 0.6891519i 3.32417− 10.81164i −13.20107− 28.52284i 7.682717− 5.839174i

0.7302143− 2.147879i 5.186405 + 2.139559i 10.36128 + 0.2717766i 0.1592258 + 3.229746i



G9 =


−0.2823835− 0.5094339i −0.6978094 + 1.757147i 3.876744− 0.2328124i 0.1008805 + 0.2457422i

1.553832 + 0.2893502i −0.679947− 0.4472327i −5.865568 + 7.425067i −1.246506− 1.672012i
−1.892054 + 2.295319i −2.359054− 1.248481i −2.47812− 8.651438i 2.589976 + 0.08344666i
0.02546755− 1.850211i 2.800566− 0.7596384i 2.877324 + 1.526914i −1.179903 + 0.9938523i



G10 =


−0.7278701 + 0.01933685i −1.896334 + 0.9618478i 1.857428 + 0.07028304i 0.3429652− 0.193996i

1.039633− 1.720876i 3.33959− 2.033801i −3.090063 + 2.040726i −0.6228015− 0.331919i
0.06188963 + 3.052901i −3.370072 + 3.00317i 0.2611086− 3.257506i 1.152816− 0.20234i
−0.5702037− 1.45945i 1.810973− 1.870706i 0.867896 + 1.212707i −0.8196431 + 0.663218i



G11 =


−0.4583179 + 0.0411382i −1.703869 + 1.378376i 1.019873 + 0.4343056i 0.3747402− 0.5523541i

0.2939612− 1.326862i 2.152771− 2.79889i −1.690817− 0.2366195i −0.1032964 + 0.6001909i
0.4985535 + 2.281285i −1.903679 + 3.010688i 0.41739− 0.6188696i 0.1973064− 0.6822424i
−0.5523052− 1.145579i 1.376495− 1.595895i 0.3197086 + 0.520304i −0.460818 + 0.6157851i
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APPENDIX B
WM SAMPLING MATRIX

In this appendix we provide the sampling matrix H ∈ CM×U for the wavefield modeling approach introduced in Section II-B,
considering the same MM prototype with M = 4 antenna ports. On the basis of Figures 9 and 13 we haven chosen U = 13
coefficients, which is sufficient to yield a reasonable accuracy.

[H]1:4,1:4 =


0.01235− 0.001501i 0.06108 + 0.04358i −0.2633− 0.02637i 0.4341 + 0.2486i

0.01408− 0.1033i 0.06935 + 0.3663i −0.06287− 1.067i −0.167 + 2.661i
0.01478− 0.05369i −0.08709 + 0.1286i 0.1088− 0.3239i −0.06128 + 0.8119i

0.0007279 + 0.01641i −0.01672− 0.03058i −0.0261− 0.02027i −0.04259− 0.086i



[H]1:4,5:8 =


−0.8519− 0.8543i 1.041 + 0.7495i −1.235− 1.646i 0.9176 + 0.744i
−0.4496− 3.444i 0.3933 + 4.271i −0.7591− 5.002i 0.3498 + 4.325i

0.185− 0.504i −0.04566 + 0.6791i 0.0514− 0.01475i −0.03447− 0.6254i
0.3964 + 0.3361i 0.02951− 0.08018i −0.07423− 0.01255i 0.1301 + 0.07376i



[H]1:4,9:12 =


−0.8669− 0.928i 0.4244 + 0.4084i −0.2688− 0.08001i 0.06771 + 0.06359i
−0.478− 3.481i −0.1735 + 2.79i −0.07445− 1.094i 0.07408 + 0.36i
−0.1257 + 0.4581i −0.002854− 0.7975i −0.08404 + 0.3119i 0.07907− 0.1239i
−0.5114− 0.3655i 0.1024 + 0.1278i −0.005089 + 0.01658i 0.02246 + 0.02706i



[H]1:4,13 =


0.01242− 0.01148i
0.01391− 0.1094i

−0.01208 + 0.05338i
−0.001222− 0.01641i
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