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Robert Pöhlmann∗, Siwei Zhang∗, Emanuel Staudinger∗, Armin Dammann∗, Peter A. Hoeher†

∗Institute of Communications and Navigation, German Aerospace Center (DLR), Oberpfaffenhofen Germany,
{robert.poehlmann, emanuel.staudinger, siwei.zhang, armin.dammann}@dlr.de
†Faculty of Engineering, University of Kiel, Kiel, Germany, ph@tf.uni-kiel.de

Abstract—Cooperative localization fills the gap in scenarios
where global navigation satellite system (GNSS) reception is
denied or impaired. Position and orientation information is
then often provided based on signal round-trip time (RTT)
and direction-of-arrival (DoA). Obtaining a meaningful RTT
requires calibrated transceiver group delays, and accurate DoA
estimation requires antenna calibration. Usually, such calibra-
tions are performed once before operation. However, calibration
parameters can change over time, e.g. due to varying temperature
of RF components or reconfigurable antenna surroundings. To
cope with that, we propose to estimate antenna responses and
ranging biases simultaneously with positions and orientations by
simultaneous localization and calibration (SLAC). We derive a
SLAC algorithm based on Bayesian filtering, which is suitable
for arbitrary antenna types. The algorithm is evaluated with
measurement data from robotic rovers. We show, that ranging
and DoA performance is improved considerably, leading to better
position and orientation accuracy with SLAC.

Index Terms—Angle-of-arrival, antenna array, antenna re-
sponse, array signal processing, direction-of-arrival, multi-mode
antenna, round-trip time

I. INTRODUCTION

Accurate localization is required by numerous applications.
Cooperative radio localization is considered, where global
navigation satellite systems (GNSSs) are not available or
cannot meet the requirements. Areas of application include
Internet of Things (IoT), autonomous driving, 5G and 6G
cellular networks, and planetary exploration by robotic multi-
agent systems. In general, not only position but also orientation
is of interest, e.g. to determine the heading of a car or
to control a robot. Abstracting from specific applications, a
cooperative network consists of two types of nodes, agents
and anchors. The positions and orientations of the agents
need to be estimated, while the positions of the anchors
are known. Distance information is obtained from the signal
round-trip time (RTT), whereas direction information in terms
of the direction-of-arrival (DoA) is obtained from multiport
antennas like phased arrays, co-located antennas or multi-
mode antennas (MMAs) [1]. Together, RTT and DoA can be
used to estimate the positions and orientations of the agents.

To obtain a meaningful RTT, the group delays in the trans-
mit and receive chains of the transceivers need to be calibrated.
Accurate DoA estimation requires antenna calibration, e.g. in
a dedicated measurement chamber. Such calibrations are usu-
ally performed before the system becomes operational. How-
ever, especially in commercial off-the-shelf (COTS) hardware,
transceiver group delays may vary, e.g. due to temperature

changes. Varying transceiver group delays result in ranging
biases. For cost and practicability reasons, antennas are often
calibrated in near-field measurement chambers, where only
the antenna itself can be measured. When the antenna is
installed in its final position, the antenna response will be
different due to the influence of the surrounding structure or
mounting platform, which leads to impaired DoA estimation
performance. When an additional sensor is available, the true
antenna response can be estimated by in-situ calibration [2].
However, without additional sensors or when the surroundings
of the antenna are reconfigurable, e.g. a manipulator arm on a
robot, antenna calibration must be performed during operation.

Calibration during operation is called simultaneous localiza-
tion and calibration (SLAC), and is often considered as part
of simultaneous localization and mapping (SLAM) [3]. An
example can be found in [4], where electromagnetic distortions
are calibrated to enable electromagnetic localization of instru-
ments in a patient’s body during surgery. In [5], ranging bias
calibration in a non-cooperative sensor network is proposed.
Calibrating the uniform linear array (ULA) of an automotive
radar using targets of opportunity is also known [6], but the
approach is limited to amplitude and phase calibration, ne-
glecting other antenna response deviations. Antenna response
calibration of arbitrary multiport antennas by SLAC is not yet
covered by the literature.

The aim of this paper is thus to introduce a cooperative
SLAC algorithm, where antenna responses and ranging bi-
ases are estimated during operation. We use a sensor fusion
approach, utilizing the robot command velocity, gyroscope
measurements and the received radio signals. The antenna
response is represented in the state space using wavefield
modeling and manifold separation. We introduce SLAC as an
iterated extended Kalman filter (IEKF)-like Bayesian filtering
algorithm. Then, we evaluate our proposed algorithm with
measurement data obtained by software-defined radios (SDRs)
mounted on robotic rovers. One rover is equipped with an
MMA. We show that cooperative SLAC improves ranging and
DoA performance, leading to better position and orientation
accuracy.

II. SIGNAL MODEL

Fig. 1 shows two agents i and j, which are part of the coop-
erative network, and the relevant metrics for 2D localization.
Assuming RTT ranging, the distance between agents i and j
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Fig. 1. Two agents i and j, the distance di,j in between the agents, the DoAs
φi,j and φj,i and the position pi = [xi yi]

T and orientation ψi of agent i.

for snapshot s is defined as

dsi,j = ‖psj − psi‖ =
c(τsi,j − τ̄si,j)

2
+ δsi + δsj , (1)

where psi =
[
xsi ysi

]T
is the position of agent i, c is the

speed of light, τsi,j is the time-of-arrival (ToA) of the return
signal, τ̄si,j is the transmit time of the forward signal and δsi and
δsj are the ranging biases of agents i and j, respectively. We
assume that the processing time at node j between receiving
and transmitting back is very short and already compensated,
such that the impact of the relative frequency offset of the
clocks of agents i and j can be neglected. The signal DoA
measured in the body frame of agent i is given by

φsi,j = φs′i,j − ψsi = arctan2
(
ysj − ysi , xsj − xsi

)
− ψsi , (2)

where ψsi is the orientation of agent i in the navigation frame
and arctan2(y, x) is the four-quadrant inverse tangent.

We assume that agent i receives a signal transmitted by
agent j, which is sampled at rate B and a discrete Fourier
transform (DFT) is performed. Following the narrowband
assumption, the signal with snapshot index s is expressed as

rsi,j(n) = ai(φ
s
i,j)s(n, τ

s
i,j)α

s
i,j e

jϕs
i,j + ws

i,j(n), (3)

with the index of the DFT bin n ∈ {1, ..., N}, the antenna
response ai(φ

s
i,j) of agent i, the amplitude of the signal αsi,j

and the phase of the signal ϕsi,j . A delayed version of the signal
s(n), transmitted by agent j, is given in discrete frequency
domain by

s(n, τ) = s(n)e−j2πτB n−1
N . (4)

Receiver noise is taken into account by ws
i,j(n) ∼

CN (0, σ2
rs
i,j
IM ) as independent and identically distributed

(i.i.d.) circular symmetric Gaussian noise with variance σ2
rs
i,j

.
For each agent i, the antenna response

ai,m(φ) =
√
gi,m(φ)ejΦi,m(φ) (5)

is described by the gain pattern gi,m(φ) and phase pattern
Φi,m(φ) of the respective antenna port m ∈ {1, ...,Mi}, so
we can define the antenna response vector as

ai(φ) =
[
a1(φ) ... aMi

(φ)
]T
. (6)

Agents with a singleport antenna, Mi = 1, are not capable of
DoA estimation. Assuming half-wavelength dipoles, (6) sim-
plifies accordingly to ai(φ) = 10

2.15 dBi
20 . For signal processing,

it is favorable that (6) can be expressed mathematically in
closed-form. Such a representation is possible by wavefield
modeling and manifold separation [7], [8], which allows us to
decompose (6) as

ai(φ) = Gi b(φ). (7)

Gi ∈ CM×U is the sampling matrix, describing the antenna,
and a b(φ) ∈ CU is a basis vector, describing the wavefield
or DoA. With the above representation, the SLAC algorithm
proposed in this paper can be applied to arbitrary types of
multiport antennas, e.g. phased arrays, co-located antennas or
MMAs. A prerequisite for (7) is that the antenna response is
square integrable and the chosen basis functions are orthonor-
mal on the manifold φ ∈ [−π, π) [7], [8]. We use the Fourier
functions

b(φ) =
1√
2π
ejφu, u =

⌊
−U − 1

2

⌋
, ..., 0, ...,

⌊
U − 1

2

⌋
(8)

as basis, where b.c is the floor function. The order U of the
basis functions is related to the electrical size of the antenna
[7]. Wavefield modeling and manifold separation can be ex-
tended to azimuth and elevation using spherical harmonics or
2D Fourier functions as basis functions [7], [8], [1], which is
beyond the scope of this paper.

When an antenna is measured, e.g. in a near-field mea-
surement chamber, or an electromagnetic (EM) simulation is
performed, spatial samples of (6) are obtained. Defining the
sample index q ∈ {1, ..., Q}, the spatial samples obtained
at DoAs φq are defined as eq =

[
eq,1 ... eq,Mi

]T
and

E0
i =

[
ei,1 ... eQ

]T
. Given that the spatial sampling

grid fulfills the Nyquist condition, a sampling matrix can be
obtained by

G0
i = E0

iB
H(BBH)−1, (9)

with B = [b(φ1), ..., b(φQ)]. However, EM simulation does
not consider deviations during the antenna manufacturing.
When the antenna alone is measured in a near-field mea-
surement chamber, the influence of the platform, where the
antenna is mounted, is neglected. Furthermore, the surrounding
structure could be reconfigurable. The sampling matrix G0

i

from (9) will thus not be identical to the true sampling matrix
Gi, which impairs DoA estimation accuracy. In this paper, we
thus propose a SLAC algorithm based on Bayesian filtering,
which uses G0

i as prior and estimates a refined sampling
matrix over time.

III. STATE SPACE & OBSERVATION MODEL

The network consists of anchor nodes and |A| agent nodes,
referred to by the agent set A. Accordingly, the state vector is
given by

xs =
[
(xs1)T ... (xsi )

T ... (xs|A|)
T
]T
, (10)



with the state vector of agent i,

xsi =
[
(xsi,loc)T (xsi,cal)

T
]T
, (11)

which contains the agent location states xsi,loc and the agent
calibration parameter states xsi,cal.

The location states of agent i are given by

xsi,loc =
[
(psi )

T ψsi
]T
, (12)

with position psi and orientation ψsi . The transition of the
location states xsi,loc of agent i from the previous snapshot
s9 = s − 1 to the current snapshot s is described by the
robotic motion model

xsi,loc = f(xs
9

i,loc) + ws
xi,loc

, (13)

f(xs
9

i,loc) =

xs9iys9i
ψs

9

i

+

−
vsi
ωs

i
sin(ψs

9

i ) +
vsi
ωs

i
sin(ψs

9

i + ωsi T )
vsi
ωs

i
cos(ψs

9

i )− vsi
ωs

i
cos(ψs

9

i + ωsi T )

Tωsi

 ,
(14)

from [9]. The model assumes control inputs of the turn rate
ωsi and linear velocity vsi with additive Gaussian noise with
variance σ2

ω and σ2
v , respectively. On robotic platforms, ωsi and

vsi are available by a gyroscope and the command velocity. The
location process noise is ws

xi,loc
∼ N (03,Σ

s
xi,loc

), where the
covariance Σs

xi,loc
is found by a transformation from control

to state space [9].
The calibration states of agent i are given by

xsi,cal =
[
δsi (gsi )

T
]T
, (15)

with the ranging bias δsi and the vectorized sampling matrix
entries split into real and imaginary part,

gsi =

[
Re {vec {Gs

i}}
Im {vec {Gs

i}}

]
, (16)

which only exist for multiport agents Mi > 1. The operator
a = vec {A} vectorizes matrix A by stacking its columns.
The calibration parameters xsi,cal are assumed to be constant
over time with zero process noise.

A common approach to cooperative localization is to first
estimate the agent distances and relative directions. In a second
step, agent positions and orientations are estimated by a subse-
quent algorithm. Contrarily, for cooperative SLAC we need to
use the received signals directly as observations, otherwise the
antenna response is not observable. The observations vector is
thus

zs =
[
... (rsi,j)

T ... (rsj,i)
T ...

]T
. (17)

The observation model is given by the concentrated log-
likelihood functions, where the unknown signal amplitude
αsi,j and phase ϕsi,j have been eliminated. Defining rsi,j =[
(rsi,j(1))T , ..., (rsi,j(N))T

]T
, the concentrated log-likelihood

function for agents with a multiport antenna, Mi > 1, is given
by

L̃(rsi,j |φsi,j , τsi,j , gsi ) =
1

σ2
rs
i,j

∥∥∥∥∥esi,j(esi,j)H(esi,j)
Hesi,j

rsi,j

∥∥∥∥∥
2

(18)

according to [10], where we define the vectors
esi,j = vec

{
a(φsi,j)s

T (τsi,j)
}

and s(τsi,j) =[
s(1, τsi,j), ..., s(N, τ

s
i,j)
]T

. For agents with a singleport
antenna, Mi = 1, (18) simplifies to

L̃(rsi,j |τsi,j) =
1

σ2
rs
i,j

∣∣sH(τsi,j)r
s
i,j

∣∣2∥∥s(τsi,j)
∥∥2 . (19)

The noise variance σ2
rs
i,j

in (18) and (19) is estimated based
on the known transmitted signal.

IV. SLAC ALGORITHM

We propose to implement cooperative SLAC as a Bayesian
filtering algorithm, where the posterior probability density
function (pdf) is calculated recursively by prediction and
update steps [9], [11]. The measurement models (18) and (19)
are highly nonlinear, thus applying linearization as in the
extended Kalman filter (EKF) is unfavorable. Furthermore, the
state vector (10) has high dimensionality, as it contains the
entries of the sampling matrix Gs. High state dimensionality
is challenging for sampling-based approaches like particle
filtering. As a consequence, we propose to use the IEKF [11]
with Laplace approximation for the covariance update [12].
The IEKF assumes that the pdfs are Gaussian distributed and
can thus be described by their mean and covariance.

Prediction of the location states is done according to the
motion model (14),

x̄si,loc = f(x̂s
9

i,loc) ∀ i ∈ A, (20)

where x̂s
9

i,loc are the estimated location states of the previous
snapshot. The calibration parameter states remain constant. As
in the EKF, the predicted covariance is

Σ̄s = F s9Σ̂s9(F s9)T + Σs
x, (21)

where Σ̂s9 is the estimated covariance matrix of the previous
snapshot. The entries of the Jacobian matrix F s9 related to
the location states are given by the Jacobian matrix of the
robotic motion model (14), see [9]. The diagonal entries of
F s9 related to the calibration states consist of ones, the off-
diagonal elements of zeros. Σs

x is the process noise covariance
matrix, which is composed of Σs

xi,loc
for the location states

and ones on the diagonal for the calibration states.
Following the IEKF, which uses a maximum a posteriori

(MAP) approach, the updated state estimate is

x̂s = arg max
xs

L (zs|xs) + L
(
xs|z1:s9

)
︸ ︷︷ ︸

g(xs)

, (22)

where we assume independent process noise for the agents
and independent measurement noise for the signals received
by the agents. The Gaussian prior from the previous snapshot
is given by

L
(
xs|z1:s9

)
=

1

2
(xs − x̄s)T

(
Σ̄s
)−1

(xs − x̄s). (23)



The log-likelihood of the observations is a double sum over
all received signals,

L (zs|xs) =
∑
i∈A

L (zsi |xsi ) =
∑
i∈A

∑
j∈Ls

i

L
(
rsi,j |xsi ,xsj

)
, (24)

where the set Lsi contains the neighboring agents and anchors,
from which agent i has received signals with snapshot index
s. The log-likelihoods are given by (19) and (18) for receiving
singleport and multiport antennas:

L
(
rsi,j |xsi ,xsj

)
=

{
L̃
(
rsi,j |φsi,j , τsi,j , gsi

)
, if Mi > 1

L̃
(
rsi,j |τsi,j

)
, if Mi = 1.

(25)
A solution to (22) is obtained by the quasi-Newton Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm, using the
gradient

∇g(xs) =
∑
i∈A

∑
j∈Ls

i

∂L
(
rsi,j |xsi ,xsj

)
∂xs

+
(
Σ̄s
)−1

(xs − x̄s).

(26)
As prediction based on control inputs is used in (14), the
predicted state x̄s is close to the solution x̂s, ensuring fast
convergence of the algorithm. The updated covariance matrix
is calculated numerically by the inverse of the Hessian matrix
at the solution, which is called Laplace approximation [12].

At snapshot s = 0, the Bayesian filtering algorithm is
initialized. An initial estimate of the agent positions p0

i =[
x0
i , y

0
i

]T
and orientations ψ0

i can be obtained by a snapshot-
based position and orientation estimation algorithm, see e.g.
[13]. The ranging bias is expected to be small, so it is
initialized with δ0

i = 0 m. For the sampling matrix entries g0
i ,

prior knowledge is available from an EM simulation or from
measuring the antenna in a near-field measurement chamber.

V. MEASUREMENTS RESULTS

The measurement scenario is shown in Fig. 2 and consists
of three anchor nodes A1, A2, A3 and four robotic agents
Dias, Drake, Magellan, Vespucci. The robotic agents are
Robotnik Summit XL rovers with skid-steering. Due to skid,
the command angular velocity is not reliable. We thus use
the command linear velocity and gyroscope measurements as
control inputs for the motion model (14). The anchor nodes
and the agents Drake, Magellan and Vespucci are equipped
with dipole antennas and Ettus Research Universal Software
Radio Peripheral (USRP) B200mini SDRs. Dias is equipped
with a four-port MMA and a USRP N310. The local oscillator
(LO) for the N310 is provided by an external frequency
synthesizer. Phase and amplitude imbalances between the four
channels are compensated, enabling phase-coherent reception.
The in-house developed MMA is a dielectric resonator antenna
with four independently excited modes [14], which is suitable
for DoA estimation [1]. The physical layer is based on the
DLR Swarm Communication and Navigation system [15].
For this experiment, the transmit power is −15 dBm, the
carrier frequency is 1.68 GHz, the occupied bandwidth is
approx. 28.2 MHz and we use orthogonal frequency-division

A1

A2
A3

Magellan

Vespucci

Dias (MMA)

Drake

Fig. 2. Measurement scenario with anchor nodes A1, A2, A3 and robotic
agents Dias (MMA), Drake, Magellan, Vespucci. Agent trajectories are plotted
in blue (Dias), orange (Drake) and yellow (Vespucci). Magellan is static.

Fig. 3. Empirical CDF of the absolute DoA estimation error, for all signals
received by agent Dias. DoA estimation is performed using the antenna
response from EM simulation, from a near-field measurement or by SLAC.

multiplexing (OFDM) with fast Fourier transform (FFT) length
1024. For the manifold separation (7), U = 13 basis func-
tions (8) are chosen to represent the antenna response. The
experiment duration was 12 min 30 s. For the first part, only
Dias (MMA) was driving until 6 min 0 s, when also Drake and
Vespucci started driving. Magellan remained static. The signals
received by all nodes have been stored and evaluated by post-
processing. The update interval is T = 0.1 s and the control
input noise parameters are assumed to be σv = 0.015 m/s1.5

and σω = 0.3
◦
/s1.5. For localization-only, we use the same

algorithm as for SLAC, outlined in Section IV, but the calibra-
tion states (15) are omitted from the state space. Ground-truth
for the positions and orientations of the agents is provided by
a commercial dual antenna real-time kinematic (RTK) system.



Fig. 4. Ranging RMSE, calculated over all links in the network, without
correction and with SLAC.

TABLE I
POSITION AND ORIENTATION RMSES.

Position RMSE Orient. RMSE
Rover Loc. SLAC Loc. SLAC

Dias (MMA) 0.32 m 0.26 m 2.1◦ 1.8◦

Drake 0.68 m 0.40 m 8.5◦ 7.9◦

Vespucci 0.72 m 0.44 m 6.6◦ 6.4◦

Magellan (static) 0.36 m 0.30 m 6.6◦ 6.6◦

To evaluate the antenna response calibration by SLAC,
we have performed DoA estimation for the signals received
by rover Dias in post-processing by a coherent maximum
likelihood (ML) estimator [1]. Fig. 3 shows the resulting
empirical cumulative distribution function (CDF) curves of the
absolute DoA estimation error, where three different antenna
responses have been assumed. The three antenna responses
are obtained by EM simulation, by measuring the antenna
in a StarLab near-field measurement system, and by SLAC.
The 90th percentile DoA estimation errors are given by 16.6◦,
10.2◦ and 5.6◦ for the respective antenna response. Thus,
SLAC is able to correctly estimate the antenna response during
operation.

Fig. 4 shows the ranging root-mean-square error (RMSE),
i.e. the RMSE of the estimated ranges (1) calculated over
all links in the network, without ranging bias correction and
with SLAC, respectively. Without ranging bias correction, the
ranging RMSE is mostly around 0.4 m except for several
spikes towards the end of the measurement, due to larger
distances between the nodes. With SLAC, the ranging RMSE
decreases below 0.4 m, as the ranging biases of the nodes are
estimated over time. The ranging RMSE with SLAC is strictly
smaller than without ranging bias correction, which highlights
the benefit of estimating ranging biases during localization.

Ultimately, position and orientation RMSE are important
figures to determine localization accuracy. Table I shows the
position and orientation RMSEs for both, localization-only
and SLAC. Using SLAC yields lower position and orientation
RMSEs for all agents except Magellan. As Magellan remained

static, its orientation accuracy could not be improved.

VI. CONCLUSION

In this paper, we have introduced calibration of antenna
responses and ranging biases simultaneously with localization,
called SLAC. By measurement data from SDRs installed on
four robotic rovers, one capable of DoA estimation, we have
demonstrated the feasibility of the proposed approach. We
have shown that SLAC is able to estimate ranging biases,
leading to a reduced ranging RMSE. Furthermore, we have
demonstrated that DoA estimation performance is improved by
SLAC, indicating correct estimation of the antenna response.
Finally, we have shown that SLAC improves the position and
orientation accuracy in a realistic scenario.

REFERENCES
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