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Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce.
Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive
sphingomyelinases is a hallmark of adaptive responses and cellular repair. As
demonstrated in experimental and observational clinical studies, the transient and
stress-triggered release of a sphingomyelinase, SMPD1, into circulation and
subsequent ceramide generation provides a promising target for FDA-approved drugs.
Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care
patients with severe COVID-19. We observed an increase of circulating activity of
sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins
and from red blood cells (RBC). Consistent with increased ceramide levels derived from
the inert membrane constituent sphingomyelin, increased activity of acid
sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing
intensive care from healthy controls. Positive correlational analyses with biomarkers of
severe clinical phenotype support the concept of an essential pathophysiological role of
ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional
inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in
independent observational studies. We conclude that large-sized multicenter,
interventional trials are now needed to evaluate the potential benefit of functional
inhibition of this sphingomyelinase in critically ill patients with COVID-19.
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INTRODUCTION

The rampant spreading of the novel severe acute respiratory
virus-2 (SARS-CoV-2) with an estimated global infection rate of
10% causing coronavirus disease 2019 (COVID-19) has resulted
in an unprecedented pandemic crisis of health care systems
worldwide (1). COVID-19 is a new disease entity and severe
cases have a high mortality due to the fact that SARS-CoV-2 is
systemic and potentially affects all organs (2–4). The clinical
course of COVID-19 is highly variable, which is also reflected by
a wide range of symptoms, such as an asymptomatic course up to
self-induced, over-exuberant inflammation and acute respiratory
distress syndrome (ARDS) with multiple organ dysfunction and
death (5). The underlying reasons for heterogeneous clinical
courses are not yet completely understood, but current data
suggest that a plethora of epidemiological factors such as age,
gender or pre-existing conditions and its medical treatment
combined with genetic susceptibility and as well as virus
associated factors such as viral load contribute to the outcome
of patients (6–10). Beside continuously increasing vaccination
rates in developed countries, therapeutic strategies targeting the
immune response, the cytokine release, and endothelial cell
barrier integrity are under development in larger clinical trials
(11). However, a majority of trials is based on vague assumptions
regarding the pathophysiological mechanisms of COVID-19,
and the development of causative treatment strategies is
hampered due to lack of disease-specific knowledge (12–14).

As an adaptive response mechanism towards cellular damage,
the conserved stress responsive enzyme acid sphingomyelinase
(ASM, systematically SMPD1) is released into circulation and is
held responsible for the rapid and transient formation of
ceramide, which is a highly bioactive lipid mediator involved in
cellular activation, damage repair, pathogen penetration, danger
signaling, maintenance of endothelial integrity and induction of
apoptosis (15–17). ASM is released from lysosomes to the outer
leaflet of cellular membranes, which are composed from high
amounts of sphingomyelin functioning as the embedded substrate
to the enzyme. ASM occurs at a low level under physiological
conditions, however, the release of the enzyme as a consequence
of lysosomal exocytosis in response to stress (18) is suggested to
be mostly relevant as a major source of circulating activity in the
course of sepsis (19, 20) and pneumonia (21). Activity levels of the
enzyme are discriminative for prediction of unfavorable outcome
in patients with polymicrobial sepsis (19, 20, 22).

Recently, in-vitro observations showed that ASM is also
activated upon infection of epithelial cells with SARS-CoV-2.
Neutralization or inhibition of subsequent ceramide generation
is able to prevent both entry and propagation of SARS-CoV-2 as
well as of pseudoviral particles presenting SARS-CoV-2 spike
protein, a bona fide system mimicking SARS-CoV-2 infection
(23–25).

There is accumulating evidence that a substantial number of
critically ill COVID-19 patients frequently exhibit viral RNAemia
accompanied with a dysregulated immune response (26) fulfilling
SEPSIS-III criteria (27, 28) with hyperinflammation manifesting
as a cytokine storm or as cytokine release syndrome, which in turn
contributes to the high mortality rates (29, 30). From a molecular
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perspective, inhibition and inactivation of ASM provide anti-
inflammatory properties by a decrease of tumor necrosis factor
(TNF) a and interleukin (IL)-6 as well as - in a reflective manner -
of IL-10 (31, 32), which are all highly correlated with morbidity
and mortality rate of COVID-19 (33, 34).

In this inter-relationship, we hypothesize that activation of
sphingomyelinase-ceramide pathway might play a crucial role in
the pathogenesis of COVID-19: (1) epithelial tissue damage to
infection and subsequent repair might result in the serum
appearance of ASM in critically ill patients, of which the
activity is associated with severity markers, as well as (2) in
rather long-lasting compartments (lipoproteins and erythrocytic
membranes) the change of activity is mirrored by an increase of
ceramides, reflecting the deteriorated status of the patients.
METHODS

Twenty-three COVID-19 patients treated in the intensive care
unit (ICU) of the Department of Anesthesiology at Göttingen
University Medical Centre (UMG) from March 2020 to May
2020 were enrolled into this study. The local ethics board at
UMG approved inclusion of all ICU patients (reference 15/4/
19Ü). Informed consent has been obtained from patients or their
legal representatives from all study participants prior to
inclusion. Data from this report are partially achieved from a
re-analysis of samples firstly reported in 20211.

For clinical evaluation, SOFA scores were calculated on
admission according to the published guidelines (35). Within
the first 24h after inclusion, serum samples were taken to
measure ceramide profile and circulating sphingomyelinase
activity. Leukocyte-free RBC were harvested from separate
samples by density gradient centrifugation, washed and stored
in plasma-free conditions at 4°C.

Ceramide measurements were performed according to an
established protocol using liquid chromatography coupled to
triple-quadrupole mass spectrometry (LC-MS/MS) (36). From
serum samples as well as pelleted RBC, proteins were precipitated
by addition of methanol supplemented with appropriate internal
standard solutions. Following separation of supernatant,
evaporation and resolubilization, detection was performed with
the QTrap triple-quadrupole mass spectrometer (Sciex, Darmstadt,
Germany) interfaced with the 1100 series chromatograph and the
Hitachi Elite LaChrom column oven and autosampler. Positive
electrospray ionization (ESI) LC/MS/MS analysis was used for
detection of sphingomyelins, positive atmospheric pressure
chemical ionization (APCI) for ceramides. Standard curves were
generated by adding increasing concentrations of ceramide up to
100 pmol of the internal standard C15-ceramide. Linearity of the
standard curves and correlation coefficients were obtained by linear
regression analyses (r2 > 0.99). Data analyses were performed using
Analyst 1.6 (Sciex).
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For determination of circulating sphingomyelinase activity,
serum samples were dissolved with reaction buffer and
supplemented with substrate solution. After incubation,
extraction, evaporation and resolubilization, detection of C17-
Cer (d18:1) for the conversion from C17-SM (d18:1) was
performed with the API2000 triple-quadrupole mass spectrometer.

For statistical analysis, primary variables were ceramide
isoforms (n=6) either in serum or RBC, and C17-Cer(d18:1) as
product of sphingomyelinase activity. Outliers were identified
according to the ROUT method with the desired maximum false
discovery rate Q set to 1% (37). Differences between two groups
were tested for significance using the unpaired Student’s t-test
with nonparametric correction using the Mann-Whitney U-test.
A p-value <0.05 was considered to be significant. Statistical
analyses were performed using Graph Pad Prism 7.0a, April
Frontiers in Immunology | www.frontiersin.org 3
2016 (La Jolla, CA, USA). Graphical illustration of variations and
principal component analyses were performed using
metaboanalyst platform [5.0 (38)].

Additional detail on the methods for making these
measurements is provided in an online data supplement.
RESULTS

Study Population
In order to investigate the ASM/ceramide signaling in SARS-CoV-2
infection, blood samples of 23 patients and six healthy volunteers
were collected. Clinical data in Table 1 summarize socio-
demographic and selected clinical characteristics of the study
group (day 1 of patients at intensive care unit due to COVID-19)
TABLE 1 | Socio-demographic and clinical parameters of patients and healthy controls.

Parameter Normal range COVID-19 Healthy controls p-value

n 23 5
Hemoglobin, g/dL 13.5-17.5 10.5 (8.8-12.5) 15.6 (14.0-15.9) <0.001
Hematocrit, % 39-51 33 (27-37) 46 (41-46) <0.001
Red blood cells, 106/µL 4.4-5.9 3.79 (3.17-4.26) 5.1 (4,3-5.3) <0.01
MCV, fL 81-95 87 (77-93) 91 (86-95) 0.219
MCH, pg 26-32 28 (24-31) 31 (29-32) 0.104
MCHC, g/dL 32-36 32.6 (31.5-33.3) 34 (33.8-34.2) <0.001
Platelets, 103/µL 150-350 195 (131-327) 285 (245-309) 0.343
Leucocytes, 103/µL 4.0-11.0 11.1 (5.6-13.6) 5.6 (5.5-7.2) 0.110
Lymphocyte, % 20-45 9.5 (5.9-25.1) 37.0 (33.0-47.5) <0.01
Monocytes, % 3-13 7.1 (4.2-8.2) 8.0 (7.0-9.5) 0.148
Eosinophiles, % ≤8 1.0 (0.35-1.5) 3.0 (2.5-3.0) <0.05
Basophiles, % ≤2 0.40 (0.15-1.0) 0.05 (0.03-0.08) N/D
Neutrophiles, % 40-76 69 (56-82) 52 (41-53) <0.05

Serum albumin, g/dL 3.4-5.5 2.1 (1.7-2.3) 4.7 (4.6-4.7) <0.001
Cholesterol, mg/dL ≤200 120 (96-143) 225 (178-246) <0.001
Triglycerides, mg/dl ≤150 135 (102-243) 100 (94-141) 0.182
LDL mg/dL ≤115 71 (50-85) 150 (124-183) <0.001
HDL mg/dL >40 18 (11-32) 54 (44-64) <0.001

Parameter Normal range COVID-19

SARS-CoV-2, GE/reaction N/A 468 (28-22011)
Age, y N/A 69 (66-75)
Died, n (%) N/A 7 (30%)
ICU days N/A 16 (7-24)
ECMO, n (%) N/A 3 (13%)
SAPS II N/A 41 (34-49)
Predicted mortality, % N/A 26.6 (15.3-43.8)
SOFA N/A 9 (5-11)
FiO2 N/A 0.50 (0.37-0.75)
paO2, mmHg 65-105 73 (66-88)
paCO2, mmHg 36-42 44 (36-62)
paO2/FiO2 N/A 133 (86-217)
SpO2 94-98 96 (95-98)
pH 7.34-7.45 7.42 (7.34-7.46)
Temperature, °C N/A 38.0 (37.0-38.5)
D-Dimers, mg/L <0.5 1.34 (0.72-3.52)
C-reactive protein, mg/dL ≤5 118.7 (29.7-186.6)
Ferritine, µg/L 22-275 732 (163-1337)
Procalcitonin, µg/L <0.07 0.50 (0.15-1.30)
Interleukin-6, pg/mL <7 75.4 (45.1-514.1)
Lactate, mmol/L ≤1.8 1.1 (0.6-1.6)
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and healthy controls. All patients received standard treatment by
the time of admission, which did not include specific anti-viral or
general anti-inflammatory drugs such as dexamethasone, because it
was not standard of care at time of inclusion. The clinical severity
assessment by use of sequential organ failure assessment (SOFA)
and the simplified acute physiology score (SAPS II) were 9 (5-11,
SOFA) and 41 (34-49, SAPS II) at enrollment. Predicted mortality
rate of COVID-19 patients was matching that observed at ICU
(26.6. vs. 30%). Parameters of healthy controls were all found in
normal range. In contrast, a significant reduction in hemoglobin,
hematocrit, RBC count, mean corpuscular hemoglobin
concentration (MCHC), serum albumin, and lipoproteins were
observed in COVID-19 patients.

Metabolite Detection
First, we analyzed the pattern of sphingomyelin in lipid extracts
of red blood cells and serum samples. Analysis of serum samples
revealed that sphingomyelin levels in circulating lipoproteins
Frontiers in Immunology | www.frontiersin.org 4
were decreased in COVID-19 patients as compared to healthy
controls (Figure 1A). Since host response and hypoxia have
profound effects on RBCs’ morphology, rheology and functional
activity (39), we thus sought to assess the composition of this
cellular subpopulation. Similar results were obtained in RBCs,
a reduction of sphingolipid content in these cells supports
the concept of a deranged sphingomyelin balance in RBC-
membranes in COVID-19 (Figure 1B). Next, we analyzed
metabolites and degradation products of sphingomyelin.
Therefore, we analyzed ceramide species with a naturally
occurring sphingoid backbone (d18:1), but without any
modification (n=11) with a chain length in a range between 12
and 26 carbon atoms and in part with an unsaturated double
bond (i.e. 12:0, 14:0, 16:0, 18:0, 18:1, 20:0, 22:0, 24:0, 24:1, 26:0
and 26:1). Thereof, six ceramide species were found above lower
limit of detection (LOD) in > 75% of all samples, which were
included in subsequent analyses. Our results - presenting a
specific disease pattern of concurring ceramide specimen - are
A

B

FIGURE 1 | Heatmap of spingolipids (SM and ceramides) as well as ASM activity either in (A) serum and (B) RBC. Shown are hierarchical cluster analyses from
data obtained by monitoring the profile of sphingomyelins and ceramides as well as ASM activity (measured in serum samples). Specimen of sphingolipids are given
in rows, individual patients samples in columns comparing patients (P1 –P23, marked in green) and healthy controls (HC 1-6, gray). Color code: increase in
sphingolipid content is given in red, decrease in blue. Distance measure is given in euclidian manner.
December 2021 | Volume 12 | Article 784989
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in line with information from previously published cohorts (21).
In serum as well as in RBC, Cer was found to be increased in
COVID-19 patients and this increase was paralleled by a
decrease of SM (Figure 1).

Changes in Ceramide Profile in Patients
With COVID-19
Principal component analysis was then used to test whether
differences in the ceramide profile reflected the clinical diagnosis
(Figure 2). In both compartments, serum samples as well as
extracts from RBC, values clustered distinctly between patients
and healthy controls. For RBC the first and second principal
components parameters were 76.5 and 12.1% (Figure 2A), for
serum 68.4 and 15.6% (Figure 2B), respectively.
Frontiers in Immunology | www.frontiersin.org 5
Concentration levels of the majority of ceramide specimens
were significantly changed in patients with COVID-19 with
respect to controls, either in serum or RBC. The absolute
amount of investigated specimen varied with respect to
expected baseline levels (Figure 3). An overview of resulting p-
values comparing the groups is given in Table 2. Median values
of individual ceramide specimen including interquartile range
(Q1/Q3) are given in Table 3 showing increased values in both
compartments, either in serum or RBC.

Activity of Circulating Sphingomyelinase
as Potential Source of Deranged
Ceramide Profiles
Considering the increase of all investigated ceramide specimen in
COVID-19 patients in serum and RBC, we then tested whether
the corresponding stress associated enzyme ASM - converting
sphingomyelin to ceramide - was more abundant and/or more
active in COVID-19 patients. Indeed, in serum of COVID-19
patients the enzyme activity was markedly increased: median
4.525 (Q25% 3.827; Q75% 5.832) nmol/(mL x h) as opposed to
0.948 nmol/(mL x h) (Q25% 0.857; Q75% 0.999) in healthy
controls and this effect was statistically significant (Figure 4)
reflecting an inflammation-driven sphingolipid reprogramming.
In patients with unfavorable outcome (n=7), the highly increased
activity levels remained nearly unchanged, but in patients with
recovery (n=16), we observed decreasing values (data
not shown).

Association of ASM-Activity With Clinical
Severity by Correlational Analyses
Correlating ASM activity with clinical parameters at day of ICU
admission revealed a clear association of ASM activity and
severity of COVID-19 (Table 4). Most prominently, we found
that the concentration of high density lipoprotein (HDL)
negatively correlated with ASM-activity, followed by
biomarkers of metabolic dysfunction such as base excess,
concentration of lactate and hydrogen carbonate. Further, the
concentration of long chain sphingomyelin from serum
constituents (lipoproteins) was found to be negatively
correlated with ASM-activity. A positive correlation was found
for plasma magnesium concentration, alanine aminotransferase
(ALT), total bilirubin, ferritin and lactate dehydrogenase.
DISCUSSION

In this observational trial, activation of plasma circulating
sphingomyelinase in response to infection was found in
COVID-19 patients undergoing intensive care treatment
resulting in an increase of ceramide isoforms generated from
inert membrane constituent sphingomyelin in RBC.

Release of ASM by an Imbalanced
Repair Mechanism
It might be speculated, that the origin of the circulating enzyme
activity might be ascribed to loss of integrity of epithelial tissues
A

B

FIGURE 2 | Reprogramming of ceramide generation. Variation of ceramide
profile either in RBC (A) or serum (B) in patients with COVID-19 compared to
healthy volunteers. Principal component analysis (PCA) based on
concentration profile of six ceramide specimen (16:0, 18:0, 20:0, 22:0, 24:0,
24:1) that passed the quality screen. Each circle represents the centroid of all
samples in the representative group at day 1 of intensive care of COVID-19
patients). Healthy controls are given as asterisks, patients in triangles.
December 2021 | Volume 12 | Article 784989
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in affected lungs, of which severe damage of alveolae beyond
remodeling of parenchyma is manifest along histopathological
findings of the disease (40, 41). Exocytosis of ASM is a common
and rather protective mechanism for rapid membrane resealing
Frontiers in Immunology | www.frontiersin.org 6
and restoration of its integrity (18, 42). The appearance of ASM
in circulation is a sensitive, but unspecific event in patients with
severe inflammation resulting from infection such as
polymicrobial sepsis (19, 20), pneumonia (21), radiation
FIGURE 3 | Ceramide profile in lipid extracts obtained from RBC and from serum samples. In patients with COVID-19, ceramide synthesis is increased in all
specimen passing quality screen in RBC, and nearly in all investigated in serum (one exception: 24:0). Total amount of ceramide specimen is differing as expected
between serum and RBC, absolute values are given in Table 3. Statistical analysis was performed using Mann-Whitney U-Test and p-values <0.05 were considered
to be significant. COVID-19 vs. healthy controls: *p < 0.05; **p < 0.01; ***p < 0.001. Exact parameters indicating statistical difference area also given in Table 2.
TABLE 2 | Overview on p-values on day of admission (day 1) to intensive care in samples obtained from COVID-19 patients either from serum or RBC with respect to
ceramide concentration differing in chain length of acylated fatty acid 16:0 to 24:1.

16:0 18:0 20:0 22:0 24:0 24:1

HC vs. COVID-19 RBC 0.001 < 0.0005 0.004 0.004 < 0.05 0.007
serum 0.007 0.001 < 0.0003 0.001 0.028 0.001
December 2021 | V
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therapy (43) or chronic inflammation (44). In community-
acquired pneumonia patients, Arshad et al. recently reported a
nearly threefold increase of plasma ASM activity, its close
correlation with severity markers (C-reactive protein,
procalcitonin), a concomitant increase of SMPD1-expression in
circulating white blood cells (twofold), and, most interestingly, a
derangement of plasma ceramide profile (21), which is very
similar to that we found in our study. There are several reports
on correlations between plasma ceramide concentration and
unfavorable outcome of critically ill patients (45, 46), especially
in the lungs (47). On a molecular level, ceramides have been
reported to activate inflammatory pathways in several abnormal
physiological circumstances involving insulin resistance,
mitochondrial dysfunction and endoplasmatic reticulum stress
(48–51), which are attributed to worsen the clinical condition of
COVID-19 patients (52–54). Despite the fact, that we are only
presenting ceramide data from accessible compartments from
these patients (serum and RBC), a close similarity of membrane
bound ceramides in bodies’ tissues with that we analyzed is
persuasive, since the hydrolyzing capacity is restricted to ASM in
these conditions.
Frontiers in Immunology | www.frontiersin.org 7
Ceramide Functioning During
Development of Long-Term
Sequelae of COVID-19
As a long-term sequelae of COVID-19, lung fibrosis is
characterized by deterioration of organ function and
subsequent respiratory failure (55). Since high quality data
regarding long-term clinical outcomes from COVID-19
survivors are still unavailable, predictions for long-term
outcome thereof are speculative at best, but it is well known
that lung fibrosis as a result of other diseases closely correlates
with poor prognosis (56). The underlying, irreversible process is
driven by sometimes excessive release of pro-fibrotic factors (56),
especially TGF-b from injured lung tissue, turning a well-
controlled healing response into a pathogenic fibrotic response
(56, 57). In follow-up chest imaging from severe courses, the
presence of intestitial thickening, irregular interface and
parenchymal bands have been suggested as predictors of
COVID-19 pulmonary fibrosis (58). Generation and
accumulation of ceramides were identified as pacemakers in
pathogenesis of pulmonary fibrosis in cystic fibrosis in mice
and men (59–61). As a consequence, inhibition of ASM resulted
in normalization of pulmonary ceramide levels, inflammation
and bacterial infection (62–64).

These and also previous observations from our group
demonstrated that an increase of ASM-activity, ceramide
formation, TGF-b circulation and - ultimately - liver fibrosis in
a mouse model of polymicrobial sepsis might be abrogated by
ASM-inhibition (65). These findings also support the concept
that activation of the sphingomyelinase-ceramide-pathway
is a universal response mechanism during host response.
Furthermore, inhibition of the enzyme might have both, short-
and long-term beneficial effects during the course of the disease.
Especially, in high risk patients anti-fibrotic therapy is a matter of
debate (66). Strikingly, data from a small series of independent
retrospective studies, clearly attest a benefit for patients
undergoing anti-depressive therapy precedent to hospitalization
due to COVID-19 (67–70). There is an anticipation that anti-
depressive drugs as functional inhibitors of sphingomyelinase
(FIASMA) (71) exhibit anti-infective properties in epithelial
cell with respect to SARS-CoV-2 (24, 72). Hoertel et al. showed
a significant association between the prehospital use of
antidepressants with subsequent inhibition of ASM and reduced
TABLE 3 | Comparing concentration of ceramides differing in chain length of acylated fatty acid 16:0 to 24:1.

RBC [nmol/mL] 16:0 18:0 20:0 22:0 24:0 24:1

COVID-19 median 3.42 1.10 0.33 2.00 1.82 6.47
Q1/Q3 2,98/4,44 0,83/1,37 0,26/0,40 1,76/2,59 1,44/2,42 5,49/8,05

Healthy controls median 1.36 0.43 0.20 1.22 1.31 3.43
Q1/Q3 1,36/1,38 0,42/0,47 0,12/0,20 0,97/1,34 1,18/1,46 3,01/3,60

Serum [nmol/mL] 16:0 18:0 20:0 22:0 24:0 24:1

COVID-19 median 1.41 0.39 0.14 0.89 0.78 1.09
Q1/Q3 1,16/1,67 0,25/0,48 0,12/0,19 0,76/1,08 0,67/0,95 1,01/1,41

Healthy controls median 0.89 0.15 0.05 0.37 0.60 0.52
Q1/Q3 0,77/1,03 0,10/0,16 0,05/0,06 0,33/0,47 0,48/0,61 0,50/0,54
December 202
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Given are the median values [nmol/mL] and the interquartile range Q1/Q3 either from serum or RBC samples. Data for statistical comparison are given in Table 2.
FIGURE 4 | Activity levels of acid sphingomyelinase (ASM) in serum samples.
Shown are medians with interquartile ranges of ASM activity levels from 23
severe COVID-19 patients and six volunteers as healthy controls, measured in
separate aliquots used for ceramide profiling. Statistical significance was
tested using the Mann-Whitney U-test; statistical difference is indicated by
asterisks: ***p < 0.0001.
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likelihood of intubation or risk of death due to SARS-CoV-2
complication (67). Notably in older adults, the short-term use of
FIASMA is generally well tolerated (73, 74). A trend for beneficial
effects of FIASMA with respect to in-hospital mortality rate
(potentially marked by older age and higher prevalence of
comorbidities) was superimposed by co-medication with
amlodipine (70). The later drug also exerts inhibitory capacity
to ASM, but also antiviral effects in-vitro (75, 76) might be
exaggerated by the Ca++-modulating mechanism (77). In line
with these results, there are similar data from small studies
demonstrating a lower mortality rate after treatment with
nifedipine or amlodipine (75, 78). A recent update on the
potential role of either a chronic expose to FIASMA or as an
interventional measure following hospitalization due to SARS-
CoV-2 infection underlines the interest to evaluate these drugs as
off-label therapy in SARS-CoV-2 infection (79). Interestingly,
recent reports demonstrated a synergistic effect of the FIASMA
fluoxetine and the direct anti-viral agent remdesivir and its
metabolite in an in-vitro-model of polarized Calu-3-cells: super-
additive effectiveness highlighted key advantages of a combined
approach against the propagation of the viral pathogen as well as
maintenance of endosomal lipid balance for entry processing into
the host at low concentrations minimizing potential adverse
effects of the drugs (80, 81).

Ceramide Function in RBC
RBC play an important role in oxygen transport and supply as
well as they are fulfilling a plethora of metabolic activities.
Within this cell population, ASM-triggered ceramide
generation contributes to Ca++-sensitivity resulting in the
release of extracellular vesicles by shaping the membrane’s
curvature (82) and induction of eryptosis, the suicidal death of
RBC (83, 84). Also, ASM induced ceramide generation changes
the biophysical properties (85) resulting in an increase of rigidity
in membranes (86, 87) impairing the function of RBC. This is in
line with observations from anemic COVID-19 patients,
Frontiers in Immunology | www.frontiersin.org 8
exhibiting RBC shape abnormalities and morphological
changes leading to a spherocyte shape, which are all
characterized by loss of elastic properties (88). After recovery,
blood smear showed unremarkable morphology (88). The same
is true with respect to formation and release of extracellular
vesicles, since ceramide generation is pace-making as shown by
studies using inhibitors of both isoforms of sphingomyelinase
(i.e. GW4869, imipramine) (89). Beside the fact of increased
levels of circulating extracellular vesicles that may drive
thrombosis in patients undergoing COVID-19 (90), to the best
of our knowledge, there are no clinical observations of RBC-
borne vesicles as yet.

Data from our correlational analyses support the hypothesis
that ASM activity is either a mediator or marker of a severe
clinical course in our patient cohort. It is well described that
patients with decreased HDL-levels are at an increased risk to
develop a severe disease course compared to patients with high
HDL levels (91). Here, low HDL values are found to be decreased
in COVID-19 patients (Table 1) and are associated with
increased ASM activity (Table 4). Most interestingly, ASM
activity is found to be associated with biomarkers of metabolic
dysfunction such as hydrogen carbonate, base excess and lactate
concentration, of which the latter one was found in our patients
in normal range (Table 1). Unlike polymicrobial sepsis, in
COVID-19 lactate levels are usually normal despite severe
pneumonia or manifest ARDS without any prognostic value
with respect to outcome (27, 92). In our study, ASM-activity and
lactate levels are highly correlating at the day of admission to the
intensive care unit. It is unclear, whether low levels of lactate are
caused by increased consumption by lactate dehydrogenase (93),
which is also found to be associated with ASM-activity. Increased
values of lactate dehydrogenase activity (LDH) at hospitalization
are positively associated with mortality (93). Considering the
parallel alteration of ASM and LDH, one might speculate that
both enzymes might be released probably from injured heart and
lung tissue (27). Therefore, it might be interesting to determine
TABLE 4 | Correlational analysis of ASM-activity with clinical and laboratory data.

rho CI p-value Pairs

High density lipoprotein -0.6379 -0,8466 to -0,2592 0.0025 20
Base Excess art. -0.5721 -0,8012 to -0,1969 0.0043 23
Base Excess ven. -0.5003 -0,7669 to -0,08661 0.0177 22
C26-SM (Serum) -0.5310 -0,7790 to -0,1394 0.0091 23
Lactate ven. 0.5380 0,1375 to 0,7873 0.0098 22
Lactate art. 0.5218 0,1269 to 0,7739 0.0107 23
HCO3 stand. art. -0.5928 -0,8459 to -0,1216 0.0173 16
HCO3 akt. art. -0.4550 -0,7363 to -0,03981 0.0291 23
HCO3, stand. ven. -0.5097 -0,8011 to -0,02305 0.0383 17
pH(T) ven. -0.5012 -0,7673 to -0,08772 0.0175 22
pH ven. -0.4825 -0,7570 to -0,06326 0.0229 22
Mg 0.5493 0,09609 to 0,8139 0.0182 18
Alanine aspartat transferase 0.4955 0,08016 to 0,7642 0.0190 22
total Bilirubin 0.4464 0,02901 to 0,7313 0.0327 23
Ferritin 0.4758 0,01312 to 0,7707 0.0395 19
Lactate dehydrogenase 0.4631 -0,003281 to 0,7640 0.0459 19
Decemb
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Given are the rho-coefficient of correlation (Spearman), the interval of 95% confidence (CI), the absolute p-value (two tailed) and the number of available data for pairwise analysis. C26-SM
sphingomyelin with an acylated fatty acid of 26 carbon atoms, respectively.
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the enzymatic activity of proteins in bronchoalveolar fluid, where
a similar change might be expected. Furthermore ASM activity is
positively associated with marker of impaired liver function such
as ALT and bilirubin, which are both (beyond LDH) previously
described as screening prognosticators of severe courses at early
stages of the disease (94). The same is true with respect to ferritin
as a surrogate for hyper-immune responsiveness, since baseline
levels at ICU-admission are increased (Table 1) (95). Established
biomarkers such as procalcitonin (p= 0.065) or SOFA-values
(0.138) failed to reach the level of significance due to the small
cohort of patients. Interestingly, there is no association of ASM
activity with values of troponin I in patients as a surrogate for
damage of myocardial tissue (p=0.3365), thus the serum
abundant ASM activity in COVID-19 is proposed to be
released from epithelial tissue of the affected lungs as
previously described in asthma (96, 97) and acute respiratory
syncytial virus bronchiolitis (98).

Limitations
Regardless of these promising new results, this study is also
confronted with particular limitations. Our study was carried out
at a single center with a quite limited number of patients, all of
them admitted to the intensive care unit. Nevertheless, we are
convinced, that the cohort is sufficiently powered for the
presented results. However, the size of the cohort does not
allow for the analysis of distinct subsets such as outcome, need
for ventilation, or any prediction of the consequences of high/low
levels of sphingomyelinase from circulation or in RBC.
Furthermore, we cannot exclude that our results are biased by
sample size or (anti-depressant) treatment strategies. We agree
that data about prehospital treatment with FIASMAs would
strengthen our results but due to the observational design and
the confirmative character of the study of an unknown
hypothesis we are not able to provide those data. Thus, also
considering the small group size, a comparative analysis of our
patients with respect to pretreatment with FIASMAs might over
expand the interpretation of our results.

We measured sphingomyelinase activity and subsequent
derangement of ceramide profile in serum/RBC and correlated
the measured values with clinical and laboratory parameters. But
our observations cannot explain cause-consequences at the end,
especially whether the increase of enzyme activity is an
epiphenomenon of or a reason for deterioration with
subsequent need for intensive care treatment. Our study,
without external validation, was primarily not designed to
assess long-term outcomes and was therefore not feasible to
screen for prognostic biomarkers for long-term sequelae.
Nonetheless, our data highlight a potentially crucial signaling
pathway in COVID-19 patients that warrants further
investigations. Notably, the activation of circulating
sphingomyelinase (ASM) and subsequent ceramide generation
during host response in these patients provide a promising
approach for functional inhibition by FDA-approved drugs to
control resulting organ dysfunction to help the body maintaining
homeostasis. Larger multicenter, interventional trials are now
needed to test the potential benefit of an inhibitory strategy in
critically ill patients with COVID-19.
Frontiers in Immunology | www.frontiersin.org 9
Conclusions
The data from our study close the gap between retrospective
observations by presenting a potential mechanism of ASM release
and action in COVID-19 patients. Keeping the paucity of proven
host-directed therapies in mind, the low level of evidence of the
majority of all running trials (14, 99) and due to the fact that a panel
of FDA-approved drugs with low risk of adverse effects is awaiting
consequent investigation, the potential usefulness of anti-
depressants in patients with COVID-19 taking FIASMA for other
indications with now known guiding principles should be
prioritized for RCT and can minimize the risk of being exposed
to novel, potentially harmful of ineffective compounds or
compounds with unknown mode of action. As also
recommended by others, the results support the continuation of
FIASMA medication in these patients (69). Moreover, the fact of
pretreatment with FIASMA should be considered while interpreting
the results from hundreds of running clinical trials (17). Double-
blind controlled randomized clinical trials of antidepressive
medication with FIASMA for transient inhibition of ASM in
COVID-19 are of great interest to investigate how the ASM/
ceramide-pathway affects disease severity, organ damage and
improvement of clinical course.
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