36 research outputs found

    Huge thermoelectric effects in ferromagnet-superconductor junctions in the presence of a spin-splitting field

    Get PDF
    We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin-split by a Zeeman field with a ferromagnet with a non-zero polarization. The resulting thermopower exceeds kB/ek_B/e by a large factor, and the thermoelectric figure of merit ZTZT can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias.Comment: 5 pages, 4 figure

    Supercurrent and Andreev bound state dynamics in superconducting quantum point contacts under microwave irradiation

    Get PDF
    We present here an extensive theoretical analysis of the supercurrent of a superconducting point contact of arbitrary transparency in the presence of a microwave field. Our study is mainly based on two different approaches: a two-level model that describes the dynamics of the Andreev bound states in these systems and a fully microscopic method based on the Keldysh-Green function technique. This combination provides both a deep insight into the physics of irradiated Josephson junctions and quantitative predictions for arbitrary range of parameters. The main predictions of our analysis are: (i) for weak fields and low temperatures, the microwaves can induce transitions between the Andreev states leading to a large suppression of the supercurrent at certain values of the phase, (ii) at strong fields, the current-phase relation is strongly distorted and the corresponding critical current does not follow a simple Bessel-function-like behavior, and (iii) at finite temperature, the microwave field can enhance the critical current by means of transitions connecting the continuum of states outside the gap region and the Andreev states inside the gap. Our study is of relevance for a large variety of superconducting weak links as well as for the proposals of using the Andreev bound states of a point contact for quantum computing applications.Comment: 16 pages, 11 figures, submitted to Phys. Rev.

    Electron cooling in diffusive normal metal - superconductor tunnel junctions with a spin-valve ferromagnetic interlayer

    Get PDF
    We investigate heat and charge transport through a diffusive SIF1F2N tunnel junction, where N (S) is a normal (superconducting) electrode, I is an insulator layer and F1,2 are two ferromagnets with arbitrary direction of magnetization. The flow of an electric current in such structures at subgap bias is accompanied by a heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We demonstrate that the refrigeration efficiency depends on the strength of the ferromagnetic exchange field h and the angle {\alpha} between the magnetizations of the two F layers. As expected, for values of h much larger than the superconducting order parameter \Delta, the proximity effect is suppressed and the efficiency of refrigeration increases with respect to a NIS junction. However, for h \sim \Delta the cooling power (i.e. the heat flow out of the normal metal reservoir) has a non-monotonic behavior as a function of h showing a minimum at h \approx \Delta. We also determine the dependence of the cooling power on the lengths of the ferromagnetic layers, the bias voltage, the temperature, the transmission of the tunneling barrier and the magnetization misalignment angle {\alpha}.Comment: 8 pages, 7 figure

    Andreev current enhancement and subgap conductance of superconducting hybrid structures in the presence of a small spin-splitting field

    Get PDF
    We investigate the subgap transport properties of a S-F-Ne structure. Here S (Ne) is a superconducting (normal) electrode, and F is either a ferromagnet or a normal wire in the presence of an exchange or a spin- splitting Zeeman field respectively. By solving the quasiclassical equations we first analyze the behavior of the subgap current, known as the Andreev current, as a function of the field strength for different values of the voltage, temperature and length of the junction. We show that there is a critical value of the bias voltage V * above which the Andreev current is enhanced by the spin-splitting field. This unexpected behavior can be explained as the competition between two-particle tunneling processes and decoherence mechanisms originated from the temperature, voltage and exchange field respectively. We also show that at finite temperature the Andreev current has a peak for values of the exchange field close to the superconducting gap. Finally, we compute the differential conductance and show that its measurement can be used as an accurate way of determining the strength of spin-splitting fields smaller than the superconducting gap.Comment: 5 pages, 4 figure

    Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Get PDF
    Selected papers from the sixth Moscow International Symposium on Magnetism (MISM-2014).-- arXiv:1407.1977v2We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.This work was supported by the Topological Quantum Phenomena (No. 23103520) KAKENHI on Innovative Areas, a Grant-in-Aid for Scientific Research (No. 25286046) from MEXT of Japan, the JSPS Institutional Program for Young Researcher Overseas Visits, the European Union Seventh Framework Programme (FP7/2007-2013) under Grant agreement “INFERNOS” no. 308850, the Spanish Ministry of Economy and Competitiveness under Project FIS2011-28851-C02-02, and the CSIC and the European Social Fund under JAE-Predoc programPeer Reviewe

    Evidence for spin selectivity of triplet pairs in superconducting spin valves.

    Get PDF
    Spin selectivity in a ferromagnet results from a difference in the density of up- and down-spin electrons at the Fermi energy as a consequence of which the scattering rates depend on the spin orientation of the electrons. This property is utilized in spintronics to control the flow of electrons by ferromagnets in a ferromagnet (F1)/normal metal (N)/ferromagnet (F2) spin valve, where F1 acts as the polarizer and F2 the analyser. The feasibility of superconducting spintronics depends on the spin sensitivity of ferromagnets to the spin of the equal spin-triplet Cooper pairs, which arise in superconductor (S)-ferromagnet (F) heterostructures with magnetic inhomogeneity at the S-F interface. Here we report a critical temperature dependence on magnetic configuration in current-in-plane F-S-F spin valves with a holmium spin mixer at the S-F interface providing evidence of a spin selectivity of the ferromagnets to the spin of the triplet Cooper pairs.This work was funded by the Royal Society through a University Research Fellowship “Superconducting Spintronics” held by J.W.A.R. M.G.B acknowledges funding from the UK EPSRC and the European Commission through an ERC Advanced Investigator Grant "Superspin". C.B.S. and R.G.J.S were supported by the Erasmus exchange programme and the Leiden Outbound Grant. C.B.S. acknowledges Prof. Jan Aarts’ for scientific input. The work of F.S.B and A. O. have been supported by the Spanish Ministry of Economy and Competitiveness under Project FIS2011-28851-C02-02. The work of A. O. have also been supported by the CSIC and the European Social Fund under JAE-Predoc program and the EU-FP 7 MICROKELVIN project (Grant No. 228464).This is the accepted version of an article originally published in Nature Communications. The final version is available at http://www.nature.com/ncomms/2014/140109/ncomms4048/full/ncomms4048.html. © Nature Publishing Group. Reuse rights are available at http://www.nature.com/authors/policies/license.html

    Detection of small exchange fields in S/F structures

    Get PDF
    Selected papers from the sixth Moscow International Symposium on Magnetism (MISM-2014).-- arXiv:1401.0646v2Ferromagnetic materials with exchange fields Eex smaller or of the order of the superconducting gap Δ are important for applications of corresponding (s-wave) superconductor/ferromagnet/superconductor (SFS) junctions. Presently such materials are not known but there are several proposals how to create them. Small exchange fields are in principle difficult to detect. Based on our results we propose reliable detection methods of such small Eex. For exchange fields smaller than the superconducting gap the subgap differential conductance of the normal metal–ferromagnet–insulator–superconductor (NFIS) junction shows a peak at the voltage bias equal to the exchange field of the ferromagnetic layer, eV=Eex. Thus measuring the subgap conductance one can reliably determine small EexΔ one can determine the exchange field in scanning tunneling microscopy (STM) experiment. The density of states of the FS bilayer measured at the outer border of the ferromagnet shows a peak at the energy equal to the exchange field, E=Eex. This peak can be only visible for small enough exchange fields of the order of few Δ.This work was supported by European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement “INFERNOS” No. 308850, by Ministry of Education and Science of the Russian Federation in the framework of the Federal Target Program >Research and development in priority areas of science and technology complex of Russia for 2014-2020>, Grant nos. 14Y.26.31.0007, 2014-14-588-0010-061, RFBR no. mol_a 14-02-31798, and by French National Agency for Research ANR-GUI-AAP-05 (electroVORTEX).Peer Reviewe

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html
    corecore