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Abstract

We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the sup-
pression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely
higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can ex-
tract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter
effect for cooling detectors, sensors, and quantum bits.
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1. Introduction

The quasiparticle transport across a normal-
metal/insulator/superconductor (N/I/S) junction
is governed by single and Andreev processes. When
the energy E of quasiparticles is larger than the
superconducting gap ∆, single quasiparticles can
tunnel through the barrier I. This selective tun-
neling of ”hot” quasiparticles gives rise to electron
cooling of the normal metal in an N/I/S junc-
tion [1–3]. Experimentally, the cooling of a normal
metal from 300mK down to below 100mK has been
demonstrated [1,4].
On the other hand, an energy E below the gap

(E < ∆), as a result of the Andreev reflection, two
quasiparticles can tunnel into S from N and form a
Cooper pair in the S electrodes. A limitation of the

performance of N/I/S coolers is resulting from the
such two-particle Andreev processes. The Andreev
current does not transfer heat through the N/I/S
interface but rather generates so called the Andreev
Joule heating [5–7]. At low temperature regimes, the
Andreev Joule heating exceeds the single-particle
cooling.
A simple way to enhance the cooling power is to

reduce the N/I/S junction transparency. However,
small barrier transparency hinders ”hot” single-
quasiparticle transport and leads to a serious limi-
tation in the achievable cooling powers. In order to
increase the barrier transparency and to reduce the
Andreev Joule heating, it was suggested to use fer-
romagnetic metals (FM) as an interlayer [8–10]. Gi-
azotto and co-workers have investigated the cooling
of a clean N/FM/S junction theoretically and found
the enhancement of the cooling power compared to
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conventional N/I/S junctions due to the suppression
of the Andreev Joule heating [8]. However in order
to realize such an efficient cooler, impractical FMs
with extremely-high spin-polarization P > 0.94 like
half metals [11] are needed.
Recently, influences of the spin-filter effect in

ferromagnetic-semiconductors [12–14] on the prox-
imity effect [15–21], the Josephson effect [22–32],
and macroscopic quantum phenomena [33–36] have
been investigated theoretically. Moreover, super-
conducting tunnel junctions with spin-filters have
been also realized experimentally [37–40] In this
work we propose an novel electron-cooler based on
clean N/spin-filter/S junctions [see Fig. 1(a)] and
show that the cooling power is drastically enhanced
due to the suppression of the Andreev reflection by
the spin-filter effect as described in Fig. 1(b). Pre-
liminary result of this work has been reported in
[41]. In this paper we will discuss about the theoret-
ical derivation of the cooling power in more detail.

Fig. 1. (a) Schematic diagram of a nor-
mal-metal/spin-filter/superconductor (N/SF/S) cooler and
(b) the delta-function model of a SF barrier. In the SF
interface (x = 0), the transmission probability of electrons
or holes for one spin-channel is much larger than the other
one. This allows the suppression of the Andreev reflection
at the SF interface.

2. Theory

Let us first consider an one-dimensional ballistic
N/SF/F junction as shown in Fig. 1(a). The spin-
filtering barrier at x = 0 can be described by a spin-
dependent delta-function potential [see Fig. 1(b)],
i.e.,

Vσ(x) = (V + ρσU) δ(x), (1)

where V is a spin-independent part of the potential,
U is the exchange-splitting, and ρσ = +(−)1 for up
(down) spins [22,42].
The spin-filtering property of the barrier is quali-

tatively characterized by the spin-filtering efficiency

P =
|t↑ − t↓|

t↑ + t↓
, (2)

where

tσ =
1

1 + (Z + ρσS)2
, (3)

is the transmission probability of the spin-filtering
barrier for spin σ with m and kF being the mass
of electrons and the Fermi wave number. The nor-
malized spin-independent and -dependent potential
barrier-height are given by

Z ≡
mV

~2kF
, (4)

S ≡
mU

~2kF
. (5)

For a perfect spin-filter with t↑ > 0 and t↓ = 0, we
get P = 1. On the other hand, we have P = 0 for
the conventional non-magnetic barrier with U = 0
(t↑ = t↓).
The system can be described by the Bogoliubov-

de Gennes (BdG) equation [22]:




H0 − ρσUδ(x) ∆(x)

∆∗(x) −H0 + ρσU(x)δ(x)



Φσ(x)

= EΦσ(x), (6)

where H0 is the spin-independent part of the single-
particle Hamiltonian, i.e.,

H0 = −
~
2∇2

2m
+ V δ(x) − µF , (7)

(µF is the chemical potential),

∆(x) = ∆(T )eiφΘ(x) (8)

is a pair potential [φ is the phase of the pair potential
and Θ(x) is the Heaviside step function],
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Φ↑(x) =





u↑(x)

v↓(x)



 , (9)

Φ↓(x) =





u↓(x)

v↑(x)



 (10)

are the eigenvectors, and the eigenenergy E is mea-
sured from µF .
The wave function in N (x < 0) and S (x > 0) is

given by

ΨN
σ (x) =





1

0



 eik
+x +





1

0



 e−ik+xreeσ

+





0

1



 eik
−xrheσ , (11)

ΨS
σ(x) =





u0

v0e
−iφ



 eiq
+xteeσ +





v0e
iφ

u0



 e−iq−xtheσ ,

(12)

where

u0 =

√

1

2

(

1 +
Ω

E

)

, (13)

v0 =

√

1

2

(

1−
Ω

E

)

, (14)

k± = kF

√

1±
E

µF

, (15)

q± = kF

√

1±
Ω

µF

, (16)

with

Ω = i
√

∆(T )2 − E2. (17)

The normal reflection coefficient reeσ and the An-
dreev reflection coefficient rheσ can be obtained by
solving the BdG equation with two boundary con-
ditions at the spin-filtering barrier (x = 0):

ΨN
σ (0) = ΨS

σ(0), (18)

−
~
2

2m

(

d

dx
ΨS

σ(x)

∣

∣

∣

∣

x=0

−
d

dx
ΨN

σ (x)

∣

∣

∣

∣

x=0

)

+





V − ρσU 0

0 V + ρσU



ΨS
σ(0) = 0. (19)

By assuming

k± ≈ q± ≈ kF (20)

based on the fact that E ∼ ∆(T ) ≪ µF , we can
analytically obtain reeσ and rheσ as follows:

reeσ (E) =−
2
[

i (ΩZ − |E|ρσS) + Ω(Z2 − S2)
]

(|E|+Ω) (1− 2iρσS) + 2Ω(Z2 − S2)
,

(21)

rheσ (E) =
∆(T )e−iφ

(|E|+Ω) (1− 2iρσS) + 2Ω(Z2 − S2)
.

(22)

In the following calculations, we have determined
the temperature T dependence of the superconduct-
ing gap ∆(T ) by solving the BCS gap equation nu-
merically.
In order to check the suppression of the Andreev

reflection by the spin-filter effect, firstly we study
the spin-dependent electron transport of the junc-
tion. The voltage V dependence of the differential
conductanceG of the system can be calculated from
the Blonder-Tinkham-Klapwijk formula [43],

G(V ) =
e2

h

∑

σ=↑,↓

[1−Bσ(E = eV ) +Aσ(E = eV )] ,

(23)

where

Bσ(E) ≡ |reeσ (E)|
2
,

Aσ(E) ≡
∣

∣rheσ (E)
∣

∣

2
. (24)

In Fig. 2 we plot the spin-filtering efficiency P de-
pendence of the conductance G(V )/GN vs eV/∆0

for a junction with (a) the transparent (t↑ = 1.0)
and (b) the tunneling barrier (t↑ = 0.1) at zero tem-
perature, where

GN =
2e2

h

1 + Z2 + S2

(Z2 − S2 + 1)
2
+ 4S2

, (25)

stands for the conductance of an N/SF/N junc-
tion and ∆0 = ∆(T = 0K). If P is increased, the
sub-gap conductance for |eV | ≤ ∆0 is largely re-
duced [41,44]. It is important to note that for the
case of the perfect spin-filter (P = 1), the An-
dreev reflection is completely inhibited, indicating
that the spin-filter would suppress the unwanted
Andreev Joule heating.
In order to see the benefit of the spin-filtering bar-

rier on the electron cooling, we numerically calculate
the cooling power by using the Bardas and Averin
formula [1,5],

3



Fig. 2. The conductance G vs the bias voltage V of a

normal-metal/spin-filter/superconductor (N/SF/S) cooler at
T = 0K for (a) transparent (t↑ = 1) and (b) tunneling barrier
(t↑ = 0.1). GN is the conductance of a N/SF/N junction, ∆0

is the superconducting gap at T = 0K, and P is the spin-fil-
tering efficiency, respectively. P = 0.0(1.0) is corresponding
to a nonmagnetic-insulating (a perfect SF) interlayer. By in-
creasing P , the sub-gap conductance is reduced considerably
due to the suppression of the Andreev reflection.

Q̇(V ) =
2e

h

∑

σ=↑,↓

∫ ∞

−∞

dE [E {1−Bσ(E)−Aσ(E)}

− eV {1−Bσ(E) +Aσ(E)}]

× [f(E − eV )− f(E)] , (26)

where f(E) stands for the Fermi-Dirac distribution
function. In the case of Q̇ > 0, we can realize cooling
of N.
The cooling power Q̇ vs the bias voltage V for (a)

t↑ = 0.1 and (b) t↑ = 0.3 is shown in Fig. 3. In the
calculation we have set that T = 0.5Tc, where Tc is
the superconducting transition temperature. As will
be discussed later, the maximal cooling power can be
realized for T ≈ 0.5Tc see Fig. 4(a). If we increase P ,
the cooling power Q̇ is enhanced drastically. These
peculiar results can be attributed to the suppression
of the Andreev reflection and equivalently the un-
desirable Andreev Joule heating. This means that

Fig. 3. The cooling power Q̇ vs bias voltage V of an N/SF/S
cooler with (a) t↑ = 0.1 and (b) 0.3 at T = 0.5Tc for several
spin polarizations P .

the spin-filter effect dramatically boosts the cool-
ing power Q̇ in comparison with conventional N/I/S
coolers.
Next let us discuss about the optimization of the

cooling power in terms of temperature T as well
as the spin-filtering efficiency P to design the high-
performance cooler. In Fig. 4 we plot the cooling
power Q̇ as a function of temperature T at the op-
timal bias voltage V = Vopt in which Q̇ is maxi-
mized as function of V . The theoretical upper-limit
of the cooling power for conventional N/I/S coolers
[Q̇(Vopt) ≈ 0.001(∆2

0/h)] is realized for t↑ = t↓ ≈
0.05 and T/Tc ≈ 0.5 (see the dotted lines in Fig. 4).
As clearly seen from Fig. 4(a), Q̇(Vopt) is maximized
around T ≈ 0.5Tc, decreasing at both higher and
lower temperatures. From the view point of practi-
cal applications, it is remarkable that if we increase
P , both the maximum value of Q̇ and the minimum
temperature in which Q̇(Vopt) ≥ 0 are largely im-
proved. Especially latter property means that we
can achievemuch lower temperature than the case of
conventional N/I/S coolers by the help of the spin-
filter effect.
In order to realize high-performance refrigerator,
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Fig. 4. The optimal cooling power Q̇(Vopt) of a N/SF/S
cooler as a function of (a) temperature T and (b) the spin–
filtering efficiency P . The dotted line is the theoretical upper
limit of the optimal cooling power Q̇max(Vopt) ≈ 0.001∆2

0/h
for conventional N/I/S coolers, which can be achieved in the
case of T/Tc ≈ 0.5 and t↑ = t↓ ≈ 0.05.

the large cooling power Q̇ is needed. We also plot the
spin-filtering efficiency P dependence of the optimal
cooling-power Q̇(Vopt) for different values of t↑ in

Fig. 4(b). The maximum cooling-power Q̇(Vopt) for
N/SF/S junctions can be achieved in the case of the
perfect spin-filter (P = 1) because of the complete
suppression of the Andreev reflection. It is impor-
tant to note that even in the small P value (P ≪ 1),
Q̇(Vopt) overcomes the theoretical upper-limit for
conventional N/I/S coolers. More notably, for the
case of t↑ = 0.3, Q̇(Vopt) can be a factor of 15 larger
than the theoretical upper-limit for N/I/S coolers.
Based on above results, we next discuss about

the advantage of SF-based coolers over FM-based
ones (N/FM/S junctions) [8,10]. In order to realize
positive cooling-power for FM-based coolers, it was
found that considerably high spin-polarization P >
0.94 is needed. In this sense we have to use exotic and
recalcitrant FMs, like half-metals [11] in the FM in-
terlayer. On the other hand, in N/SF/S cooler, much
smaller value of P is enough for realizing the high

performance cooler. This means that large number
of SF materials, e.g., Eu chalcogenides [13], rare
earth nitrides, spinel ferrites [45–49], and mangan-
ites [38,50–53] can be used for solid-state coolers.
More importantly such junctions with large P have
been already realized in an EuS/Al (P ∼ 0.9) [13],
EuSe/Al(P ∼ 1) [42], and GdN/NbN junction (P ∼
0.8) [37]. Therefore we can conclude that SF-based
cooler is much more practical than the FM based
one. This is a crucial advantage of the SF-based
cooler.
It is important to note that in spin-filter coolers

with large P , one of the spins (e.g., up-spin elec-
trons) with E > ∆(T ) can tunnel through the SF
barrier, but opposite spins (e.g., down-spin elec-
trons) with E > ∆(T ) can not be escaped from N
to S. This means that the only the up-spin elec-
trons can contribute to the cooling. By using a
S/SF1/N/SF2/S structure in which the magnetiza-
tion direction of SF1 and SF2 layers is antiparallel,
it is possible to effectively cool down both up- and
down-spin quasiparticles in N.

3. Summary

To summarize, we have proposed a novel electron-
cooler based on ballistic N/SF/S junctions. We
found that the cooling power Q̇ is higher than
the theoretical upper-limit of Q̇ for conventional
N/I/S coolers, which results form the suppression
of the Andreev Joule heating. Our results open up
a way to make efficient solid-based refrigerators for
cooling several useful and practical devices, such
as superconducting X-ray detectors, single-photon
detectors, magnetic sensors, NEMSs, and qubits.
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[45] U. Lüders, M. Bibes, K. Bouzehouane, E. Jacquet, J.
-P. Contour, S. Fusil, J. -F. Bobo, J. Fontcuberta, A.
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