8 research outputs found
Single-cell RNA sequencing reveals the expansion of circulating tissue-homing B cell subsets in secondary acute dengue viral infection.
The roles of antibodies secreted by subsets of B cells in dengue virus (DENV) infection have been extensively studied, yet, the contribution of tissue-homing B cells to antiviral immunity remains unclear. In this study, we performed a comprehensive analysis of B cell subpopulations in peripheral blood samples from DENV-infected patients using single-cell RNA-sequencing (scRNA-seq) datasets and flow cytometry. We showed that plasma cells (PCs) and plasmablasts (PBs) were the predominant B cell populations during the acute phase of secondary natural DENV infection, but not in convalescent phase nor in healthy controls. Interestingly, these cells expressed proliferation, adhesion, and tissue-homing genes, including SELPLG, a homing marker of the skin, the initial infected site of DENV. Flow cytometry analysis confirmed a significant upregulation of cell surface expression of a cutaneous lymphocyte-associated antigen (CLA) encoded by SELPLG in PCs and PBs, compared to naive and memory B cells from the same patients. The analysis of an independent single-cell B-cell receptor sequencing (scBCR-seq) dataset of DENV-infected patients revealed that the peripheral blood PCs and PBs exhibited the highest clonal expansion in secondary DENV infection compared to other B cell subsets. These clonally expanded cells also expressed the highest levels of tissue-homing genes, including SELPLG. In addition, by utilizing a public scRNA-seq dataset of SARS-CoV2 infection, we demonstrated the upregulation of several tissue-homing genes in PCs and PBs. Our study provides evidence for the potential roles of tissue-homing B cell subsets in the context of immune responses against viral infections in humans
Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types.
Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1
Single-cell temporal analysis of natural dengue infection reveals skin-homing lymphocyte expansion one day before defervescence.
Effective clinical management of acute dengue virus (DENV) infection relies on the timing of suitable treatments during the disease progression. We analyzed single-cell transcriptomic profiles of the peripheral blood mononuclear cell samples from two DENV patients, collected daily during acute phase and also at convalescence. Key immune cell types demonstrated different dynamic responses over the course of the infection. On the day before defervescence (Day -1), we observed the peak expression of several prominent genes in the adaptive immunological pathways. We also characterized unique effector T cell clusters that expressed skin-homing signature genes at Day -1, whereas upregulation of skin and gut homing genes was also observed in plasma cells and plasmablasts during the febrile period. This work provides an overview of unique molecular dynamics that signify the entry of the critical phase, and the findings could improve the patient management of DENV infection