280 research outputs found

    Computation of magnetic field in an actuator

    Get PDF
    Design and optimization of an actuators based on magnetostrictive technology requires computation of the magnetic field. The “MS”-technology offers an attractive controllability with high power density. The magnetostriction is a reversible feature which can be used in various actuator layouts. The actuator performance depends on driving magnetic field and the particular magnetic properties of used materials. Good understanding of specific design constrains is required to define and to optimized a magnetostrictive actuator. The non-linear computation of the magnetic field using FEM software is vital for the finale experimental design of a low-frequency actuator. This paper presents results of magnetic field simulation with FEMM software package and experimental measurements of the magnetic flux density. Good correlation between the simulation results and experimental measurements has been achieved

    Design of a magnetostrictive (MS) actuator

    Get PDF
    Several advanced technologies are introduced in automotive applications. Higher energy density and dynamic performance are demanding new and cost effective actuator structures. Magnetostriction (MS), change in shape of materials under the influence of an external magnetic field, is one of these advanced technologies. Good understanding of specific design constrains is required to define and optimized a magnetostrictive actuator. This paper presents parametrical analysis with magnetic simulation of a magnetostrictive actuator. Proposed actuator has been designed, and the performance has been evaluated on experimental rig. Strain, elongation of the shaft, of 1000ppm at 10Amp and a blocked force over 4500N has been achieved with shaft of 8mm diameter, made of Terfenol-D. Furthermore, the effect of pre-stress of the Terfenol-D shaft has been evaluated experimentally. The study shows that excellent features can be obtained by magnetostrictive materials for many advanced applications

    Design and application of magneto-rheological fluid

    Get PDF
    Magneto-Rheological Fluid (MRF) technology is an old “newcomers” coming to the market at high speed. Various industries including the automotive industry are full of potential MRF applications. Magneto-Rheological Fluid technology has been successfully employed already in various low and high volume applications. A structure based on MRF might be the next generation in design for products where power density, accuracy and dynamic performance are the key features. Additionally, for products where is a need to control fluid motion by varying the viscosity, a structure based on MRF might be an improvement in functionality and costs. Two aspects of this technology, direct shear mode (used in brakes and clutches) and valve mode (used in dampers) have been studied thoroughly and several applications are already present on the market. Excellent features like fast response, simple interface between electrical power input and mechanical power output, and precise controllability make MRF technology attractive for many applications. This paper presents the state of the art of an actuator with a control arrangement based on MRF technology. The study shows that excellent features like fast response, simple interface between electrical power input and the mechanical power output, and controllability make MRF the next technology of choice for many applications

    Design of magneto-rheological (MR) valve

    Get PDF
    Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with magnetic simulations, of a magneto-rheological valve and a magneto-rheological orifice. Experimental rig assemblies of two different control devices have been designed, built and the performances have been evaluated experimentally. Controlled pressure drops, of 0.6MPa @ 4.5A at 5cm³/s in the orifice mode, and 1.5MPa @ 4.5A at 0 cm³/s, in the valve mode, using MRF132-AD, have been achieved. The study shows that excellent features like the fast response and the contactless nature of MRF control are attractive for various control devices

    Pretreatment techniques used in biogas production from grass

    Get PDF
    Grass is being considered as a potential feedstock for biogas production, due to its low water consumption compared to other crops, and the fact that it can be cultivated in non-arable lands, avoiding the direct competition with food crops. However, biogas production is limited by the characteristics of the feedstock; in particular its complex lignocellulosic structure. Hence, different pretreatment methods are being investigated for grass structure disruption before undergoing the anaerobic digestion process. The aim of this paper is to review current knowledge on pretreatment techniques used for grassland biomass. Pretreatment techniques were categorized into mechanical, microwave, thermal, chemical and biological groups. The effect of the application of each studied methods on the biogas yield and on the energy balance is discussed. A further comparison between the covered techniques was revealed

    Renewable energy scenario and environmental aspects of soil emission measurements

    Get PDF
    European Commission has set clear targets for 2020 regarding energy and environment policy; these targets include 20% cut in greenhouse gas emissions against the 1990 levels. It is believed that adopted strategy has encouraged the renewable energy applications during the last two decades. Moreover, measurement deviations of carbon dioxide flux occurring in respiration chambers has been seen of a great importance to explain the biochemical parameters affecting the climate change issue. This is attributed on many occasions to chamber design constraints and the way they are coupled with the studied site location. This is illustrated by external disturbances whereby when they happen while gas measurements are taken measurement deviations become more evident. This paper surveys the different soil physical, biological and geotechnical parameters and links them to meteorological ones. Consequently it explores their direct and indirect effects to the produced soil efflux. Furthermore this paper proposes several soil temperature models according to the studied case constraints to see what affects soil efflux production. Moreover a clear understanding of what affects the measurement process was achieved through surveying all the internal and external pressure parameters and how they influence the chamber in relation to time. The conclusion is that respiration chamber designers need to preserve chamber internal temperature and pressure to be equal to the outer atmosphere for the case of stabile external conditions. For the case of unstable external conditions design counter measures are incorporated. Furthermore the appropriate gas sensor needs to be selected professionally with emphasis on the importance of installation location inside the chamber. Likewise soil bacterial type and soil temperature also has an influence on efflux production

    Advances in stationary and portable fuel cell applications

    Get PDF
    The reliance on fossil fuels is one of the most challenging problems that need to be dealt with vigorously in recent times. This is because using them is not sustainable and leads to serious environmental issues, such as: air pollution and global warming. This condition affects economic security and development. An alternative to fossil fuel is highly possible which will be more environmentally friendly, sustainable and efficient as well. Among all the different technologies associated with renewable energy, fuel cell technologies represent one of the most promising technological advancement to curb the situation. In this paper, an overview of the technology and its advantages and disadvantages compared with competitive technologies was revealed. The application of different fuel cell types in the stationary and portable sectors was covered. Furthermore, recent challenges and promising developments of current fuel cell technologies in different studied applications were reviewed. Some possible solutions to the challenges were named in this paper for both the portable and stationary fuel cell applications. The paper further seeks to expose the world to the current progress made in the fuel cell industry up to date and possible areas that needs intensified research and modifications to make the fuel cell industry more vibrant and buoyant

    Sensory Evaluation of A Novel Ingredient Produced from Buttermilk

    Get PDF
    Abstract of paper presented at the 2006 Joint Annual Meeting of the American Dairy Science Association & the American Society of Animal Science
    • 

    corecore