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Computation of magnetic field in an actuator
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Abstract:

Design and optimization of an actuators based on magnetostrictive technology requires
computation of the magnetic field. The “MS”-technology offers an attractive controllability
with high power density. The magnetostriction is a reversible feature which can be used in
various actuator layouts. The actuator performance depends on driving magnetic field and the
particular magnetic properties of used materials. Good understanding of specific design
constrains is required to define and to optimized a magnetostrictive actuator. The non-linear
computation of the magnetic field using FEM software is vital for the finale experimental
design of a low-frequency actuator. This paper presents results of magnetic field simulation
with FEMM software package and experimental measurements of the magnetic flux density.
Good correlation between the simulation results and experimental measurements has been

achieved.
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1. Introduction of the magnetostrictive actuator

Magnetostriction (“MS”) is the change in shape of materials under the influence of an
external magnetic field. The magnetostrictive effect was first described in the 19" century
(1842) by an English physicist James Joule. Several applications based on magnetostrictive
technology have been introduced in various industries. A summary of literature survey can be
found in article [1]. The article [2] captures the optimization of the strain performance using
mechanical pre-stress. The maximum useful magnetoelastic strain is one of the key
parameters defining the resulting mechanical output in the case of a magnetostrictive actuator.
In case a shaft is made of magnetostrictive material, i.e. Terfenol-D, magnetic field along the
shaft axle will cause axial elongation. The applied magnetic field leads to relative strain in the
magnetostrictive material. A higher magnetic field causes higher strain and leads to larger
elongation. Without the magnetic field the shape of the magnetostrictive material reverse to
the original. Fig. 1 depicts a cross section of the actuation hardware based on

magnetostrictive technology.
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Fig. 1: Cross-section of the actuator used in the study

2. The Magnetic circuitry for the magnetostrictive actuator

A coil in an appropriate ferromagnetic housing is defined as the source of the magnetic field.
The chosen diameter of the Terfenol-D shaft is 8 mm and the length is about 68 mm [2]. The
magnetic field is generated by electric current IJA] through the actuator coil. The coil is
wound around the Terfenol-D shaft and the magnetic field is therefore parallel to the axis of
the rod. Fig. 2 depicts the generally the coil layout.
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Actuator coil

Terfenol-D shaft

Fig. 2: Layout of the actuator coil

Since not only the coil is involved in the magnetic circuit other ferromagnetic components
like housing, Terfenol-D shaft and inserts have to be considered. Fig. 3 presents the main

magnetic path through the magnetostrictive actuator.

Fig. 3: Magnetic path through the actuator

In Fig. 3 there are six designated sections of component through which the magnetic flux
passes. It is important to include all six terms in order to estimate the required total
magnetomotive force, and so the return path of the magnetic flux through steel components
must also be considered. For each section there is a length of the magnetic path, I, and a value
for the magnetic field strength, H. The length is fixed by the geometry of the system, but the
value of H must be determined by making use of the magnetic properties of the material.

Fig. 4 presents the coil specification which has been used for the magnetic field simulation

and for the experimental evaluation.
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Fig. 4: Electric coil for the actuator

In order to verify the simulated model of actuator, the experimental rig assembly has been
prepared for measurements of flux density with Tesla Meter. The magnetic properties of
Terfenol-D at various pre-stress levels have been provided by the Terfenol-D supplier [3]. Fig.
5 depicts the B-H characteristic of the Terfenol-D shaft at pre-stress about 7.2MPa.

The pre-stress in the assembly has been achieved by using appropriate preload-spring (part
number 11 in Fig. 2). A force sensor based on piezo technology (part number 15 in Fig. 2) has

been used to measure the pre-load in the experimental rig assembly.
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B-H Diagram Terfenol-D (7.2MPa)
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Fig. 5: B-H diagram of Terfenol-D with measurement data [3]

For the housing of the actuator the low carbon steel, Ck15, has been used. The magnetic

properties of Ck15 are shown in Fig. 6.
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Fig. 6: B-H diagram of Ck15 with measurement data
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4. Magnetic Field Simulation

In order to optimize the design of the actuator, a simulation of magnetic field, including the
real magnetic properties of used material, is required. The nonlinear simulation method was
used to determine and optimize the actuator and control performance. Due to nonlinear B-H
function the system has to be solved by an iterative way. Finite element modelling methods
of the magneto-mechanical phenomena have been proposed in several publications. Terfenol-
D is a smart material in that the magnetic properties are coupled with mechanical state and
vice versa. For the optimization of the proposed structure the free available software package
FEMM have been used. The simple user interface and efficiency has been found in using the
free available FEMM software packaging developed by David Meeker, Senior Engineer at
Forster-Miller Inc. [4]. Results from the magnetic field simulation from FEMM have been
evaluated and positively verified with measurements. For low-frequency (<500Hz)
evaluations only a part of the complete Maxwell’s equations is considered. Fig. 7 shows the

reference plot of the cross-section from the actuator.

Length

Co

d 50 mm - 100 mm
Fig. 7: Reference figure of the actuator plots of B (T) and H (A/m)

Due to proposed measuring method with the Tesla-Meter, minor modifications of the actuator
structure were required. Following simulation model has been used to verify the simulated
flux density with the measured flux density. Fig. 8 presents the actuator model without (left)

and with (right) Tesla-Meter probe.
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Fig. 8: Actuator model without (left) and with (right) Tesla-Meter probe
Fig. 9 presents the simulation results of flux density B (T) obtained with FEMM at nominal

electrical current of about 9A. On the left side: the original actuator assembly; on the right

side: the modified assembly for Tesla-Meter probe. Top-to-bottom reference centre line has

been used as reference.
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Fig. 9: Flux density without (left) and with (right) Tesla-Meter probe
The difference between the two above showed results has been found as acceptable for

verification of the magnetic field simulation results. Figures 10 and 11 show some simulation

results of flux density B(T) and field intensity H (kA/m) at various current levels.
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Fig. 10: FEMM flux density B (left) and field intensity H (right) at 1 A
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Fig. 11: FEMM flux density B (left) and field intensity H (right) at 10 A

3. Experimental evaluation

A power supply unit (up to 10A, DC), a Multi-Meter for current measurements and the Tesla-
Meter Model 5080 have been used for experimental evaluation. The actuator assembly has

been completed and used to verify the simulation results with measured magnetic flux density
Fig. 12 depicts the test bench layout for magnetic flux density measurements.

Fig. 12: Picture from “MS”-actuator assembly
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The flat Tesla-probe has been adapted in to the actuator assembly according Fig. 13.

Fig. 13: Actuator with Tesla-Meter probe (Model 5080)

The Fig. 14 presents the Tesla-Meter with the transverse probe. Hall effect element at the top

of the flat probe has been used to measure the magnetic flux density B in tesla.
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Fig. 14: Tesla-Meter Model 5080 [5]
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Table 1 presents the results from FEMM magnetic field simulation and the measurement

results of flux density at the top of the Terfenol-D shaft

Table 1: Simulation and measurement result for comparison

Electric current | | FEMM flux density |Measured flux density | FEMM flux density in Expected field intensity in

(Armp) in the gap B (Tesla) | inthe gap B (Tesla) Terfenal-D B (Tesla) Terfenol-D H (A/m) at 7. 2MPa
0o 0.000 0.000 0.000 n]

1.0 0.200 0.220 0.400 11800

20 0.330 0.300 0.600 23000

3.0 0.400 0.342 0.660 37000

4.0 0.450 0.382 0.710 47800

5.0 0.500 0417 0.750 55000

5.0 0.540 0.450 0.775 57800

7.0 0.580 0.480 0.810 87000

g.0 0.620 0.520 0.830 93000

a0 0.640 0.560 0.870 105000

10.0 0.660 0.580 0.820 115000

Fig. 15 depicts the measured flux density at the top of the Terfenol-D shaft with simulated
results, obtained with FEMM.
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Fig. 15: FEMM flux density B (T) versus electrical current

4. Conclusions

Summarizing the results from simulation and the flux density measurement with the Tesla-

Meter Model 5080 can be stated, that the results are within the specified range and in good

consistence. The FEMM software for non-linear magnetic field simulation can be used to

finalize and to optimize the product design. The difference in the simulated results and the

measured flux density is predictable and was caused by accepted variations of the housing

material and measurement tolerances. The presented simulation results have been used for

design freeze and for further experimental evaluations of the magnetostrictive actuator.
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