2,591 research outputs found
What comes after the quota went? Effects of and responses to the ATC expiry
Abstract
The global environment after the expiry of the quota system in textiles and clothing (T&C) trade poses
formidable challenges to human development in Pakistan. Increased quality and price competition in the
post-ATC scenario provides an opportunity for some segments of the T&C sector – but a threat to the
most labour-intensive ones. As quality and quantity of employment were largely ignored factors in the
preparations for the Agreement on Textiles and Clothing’s (ATC’s) abolition in Pakistan, potential job
and wage losses are feared, in garment manufacturing in particular. Unskilled and female workers are
most vulnerable
Quantitative Decoding of Interactions in Tunable Nanomagnet Arrays Using First Order Reversal Curves
To develop a full understanding of interactions in nanomagnet arrays is a
persistent challenge, critically impacting their technological acceptance. This
paper reports the experimental, numerical and analytical investigation of
interactions in arrays of Co nanoellipses using the first-order reversal curve
(FORC) technique. A mean-field analysis has revealed the physical mechanisms
giving rise to all of the observed features: a shift of the non-interacting
FORC-ridge at the low-H end off the local coercivity H axis; a stretch
of the FORC-ridge at the high-H end without shifting it off the H axis;
and a formation of a tilted edge connected to the ridge at the low-H end.
Changing from flat to Gaussian coercivity distribution produces a negative
feature, bends the ridge, and broadens the edge. Finally, nearest neighbor
interactions segment the FORC-ridge. These results demonstrate that the FORC
approach provides a comprehensive framework to qualitatively and quantitatively
decode interactions in nanomagnet arrays.Comment: 19 pages, 4 figures. 9 page supplemental material including 3 figure
Striped Hyaena Hyaena hyaena (Linnaeus, 1758) (Carnivora: Hyaenidae) new reports in Nandhaur Valley, Terai Arc Landscape, Uttarakhand, India
Striped Hyaena Hyaena hyaena Linnaeus, 1758 species is one of the largest carnivores found in Indian Sub-continent reported for first time in the Nandhaur Valley in Terai Arc Landscape, Uttarakhand, India. Diagnosis and photograph of the species is provided
C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion.
Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR
Use of Wireless Sensor and Microcontroller to Develop Water-level Monitoring System
This paper presents the design and development process of Wireless Data Acquisition System (WiDAS) which is a multi-sensor system for water level monitoring. It also consists of a microcontroller (ATMega8L), a data display device and an ultrasonic distance sensor (Parallax Ping). This wireless based acquisition system can communicate through RF module (Tx-Rx) from the measurement sources, such as sensors and devices as digital or analog values over a period of time. The developed system has the option to store the data in the computer memory. It was tested in real time and showed continuous and correct data. The developed system is consisting of a number of features, such as low energy consumption, easy to operate and well-built invulnerability, which cangive successful results to measure the water level. Finally, its flexibility facilitates an extensive application span for self-directed data collection with trustworthy transmission in few sparse points over huge areas
Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
The QGP phase in relativistic heavy-ion collisions
The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus
collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD)
transport approach, which is based on a dynamical quasiparticle model for
partons (DQPM) matched to reproduce recent lattice-QCD results - including the
partonic equation of state - in thermodynamic equilibrium. The transition from
partonic to hadronic degrees of freedom is described by covariant transition
rates for the fusion of quark-antiquark pairs or three quarks (antiquarks),
respectively, obeying flavor current-conservation, color neutrality as well as
energy-momentum conservation. The PHSD approach is applied to nucleus-nucleus
collisions from low SIS to RHIC energies. The traces of partonic interactions
are found in particular in the elliptic flow of hadrons as well as in their
transverse mass spectra.Comment: To be published by Springer in Proceedings of the International
Symposium on `Exciting Physics', Makutsi-Range, South Africa, 13-20 November,
201
Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.
Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites
- …
