449 research outputs found
Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
The Hsc/Hsp70 co-chaperones of the BAG (Bcl-2-associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin-binding protein p62/SQSTM1. The BAG3/BAG1 ratio is also elevated in neurons during aging of the rodent brain, where, consistent with a higher macroautophagy activity, we find increased levels of the autophagosomal marker LC3-II as well as a higher cathepsin activity. We conclude that the BAG3-mediated recruitment of the macroautophagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging
Predictive value of admission red cell distribution width-platelet ratio for no-reflow phenomenon in acute ST segment elevation myocardial infarction undergoing primary percutaneous coronary intervention
Background: The red cell distribution width–platelet ratio (RPR), a novel inflammatory marker is currently used to predict inflammation in chronic diseases. It may be associated with adverse outcomes among artery disease but its prognostic value in ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PCI) has not been fully investigated. There is no data regarding the association between RPR and in-hospital major adverse cardiovascular events (MACEs). This study evaluated the relations between pre-procedural RPR and the in-hospital and long-term outcomes in STEMI patients undergoing primary PCI.
Methods: This study included 580 STEMI patients (77% men, mean age: 59 ± 12 years). The patients were divided into two groups according to thrombolysis in myocardial infarction (TIMI) flow grades after primary PCI. No-reflow was defined as a post-PCI TIMI flow grade of 0, 1 or 2 (group 1). Angiographic success was defined as TIMI flow grade 3 (group 2).
Results: Whole blood cell count, neutrophil and lymphocyte percentages, red cell distribution width, platecrit, neutrophil–lymphocyte ratio (NLR) and RPR values were higher among patients with no-reflow. On multivariate analysis, pain to balloon time, multivessel disease, TIMI thrombus grade, tirofiban, aspirin, previous coronary artery disease, NLR, platecrit and RPR remained independent predictors of no-reflow after primary PCI. Patients in no-reflow group tended to be higher percent in-hospital MACE, including nonfatal myocardial infarction and cardiovascular mortality compared to the reflow patients.
Conclusions: Admission NLR, platecrit and RPR are independent correlates of no-reflow and in-hospital MACEs among patients with STEMI undergoing primary PCI.
Comparison and evaluation of experimental mediastinitis models: precolonized foreign body implants and bacterial suspension inoculation seems promising
BACKGROUND: Post-sternotomy mediastinitis (PSM) is a devastating surgical complication affecting 1–3% of patients that undergo cardiac surgery. Staphylococcus aureus is one of the most commonly encountered bacterial pathogen cultured from mediastinal samples obtained from patients with PSM. A component of the membrane of the gram positive bacteria, lipoteichoic acid, stimulates the blood monocytes and macrophages to secrete cytokines, radicals and nitrogen species leading to oxido-inflammatory damage. This seems to be responsible for the high mortality rate in PSM. For the evaluation of the pathogenesis of infection or for the investigation of alternative treatment models in infection, no standard model of mediastinitis seems to be available. In this study, we evaluated four mediastinitis models in rats. METHODS: The rats were divided into four groups to form different infection models. Group A: A suspension of 1 × 10(7 )colony-forming units Staphylococcus aureus in 0,5 mL was inoculated from the right second intercostal space into the mediastinum. Group B: A hole was created in the right second intercostal space and a piece of stainless-steel implant with a length of 0.5 cm was inserted into the mediastinum and a suspension of 1 × 10(7 )cfu bacteria in 0,5 mL was administered via the tail vein. Group C: Precolonized stainless-steel implant was inserted into the mediastinum. Group D: Precolonized stainless-steel implant was inserted into the mediastinum and the bacteria suspension was also injected into the mediastinum. On the 10(th )day, rats were sacrificed and the extension of infection in the mediastenae was evaluated by quantitative cultures. Myeloperoxidase activity (MPO) and malondialdehyde (MDA) levels were determined in the sera to evaluate the neutrophil activation and assess the inflammatory oxidation. RESULTS: The degree of infection in group C and D were 83.3% and 100% respectively (P < 0.001). MDA levels were significantly higher in these two groups than the others (P < 0.001). CONCLUSION: Infected implants and high bacterial concentration administration were the two important components that played a significant role in the outcome of a successful infection in mediastinum in a rat model
CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration
SummaryNeurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans
The genetic structure of the Turkish population reveals high levels of variation and admixture
The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes
Assessment of the requisites of microbiology based infectious disease training under the pressure of consultation needs
<p>Abstract</p> <p>Background</p> <p>Training of infectious disease (ID) specialists is structured on classical clinical microbiology training in Turkey and ID specialists work as clinical microbiologists at the same time. Hence, this study aimed to determine the clinical skills and knowledge required by clinical microbiologists.</p> <p>Methods</p> <p>A cross-sectional study was carried out between June 1, 2010 and September 15, 2010 in 32 ID departments in Turkey. Only patients hospitalized and followed up in the ID departments between January-June 2010 who required consultation with other disciplines were included.</p> <p>Results</p> <p>A total of 605 patients undergoing 1343 consultations were included, with pulmonology, neurology, cardiology, gastroenterology, nephrology, dermatology, haematology, and endocrinology being the most frequent consultation specialties. The consultation patterns were quite similar and were not affected by either the nature of infections or the critical clinical status of ID patients.</p> <p>Conclusions</p> <p>The results of our study show that certain internal medicine subdisciplines such as pulmonology, neurology and dermatology appear to be the principal clinical requisites in the training of ID specialists, rather than internal medicine as a whole.</p
AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma
A causative understanding of genetic factors that regulate glioblastoma pathogenesis is of central importance. Here we developed an adeno-associated virus-mediated, autochthonous genetic CRISPR screen in glioblastoma. Stereotaxic delivery of a virus library targeting genes commonly mutated in human cancers into the brains of conditional-Cas9 mice resulted in tumors that recapitulate human glioblastoma. Capture sequencing revealed diverse mutational profiles across tumors. The mutation frequencies in mice correlated with those in two independent patient cohorts. Co-mutation analysis identified co-occurring driver combinations such as B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1, which were subsequently validated using AAV minipools. Distinct from Nf1-mutant tumors, Rb1-mutant tumors are undifferentiated and aberrantly express homeobox gene clusters. The addition of Zc3h13 or Pten mutations altered the gene expression profiles of Rb1 mutants, rendering them more resistant to temozolomide. Our study provides a functional landscape of gliomagenesis suppressors in vivo
Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism
SummaryWe have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6–12.0, p = 2.4 × 10-7). We estimate there are 130–234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1
- …