3,069 research outputs found

    Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber

    Full text link
    We experimentally demonstrate the efficient channeling of fluorescence photons from single q-dots on optical nanofiber into the guided modes, by measuring the photon-count rates through the guided and radiation modes simultaneously. We obtain the maximum channeling efficiency to be 22.0 (\pm4.8)% at fiber diameter of 350 nm for the emission wavelength of 780 nm. The results may open new possibilities in quantum information technologies for generating single photons into single-mode optical-fibers.Comment: 5 pages, 4 figure

    Analysis of previous microscopic calculations for second 0+0^+ state in 12^{12}C in terms of 3-alpha particle Bose-condensed state

    Full text link
    The wave function of the second 0+0^+ state of 12^{12}C which was obtained long time ago by solving the microscopic 3α\alpha problem is shown to be almost completely equivalent to the wave function of the 3α\alpha condensed state which has been proposed recently by the present authors. This equivalence of the wave functions is shown to hold in two cases where different effective two-nucleon forces are adopted. This finding gives strong support for interpreting the second 0+0^+ state of 12^{12}C which is the key state for the synthesis of 12^{12}C in stars ('Hoyle' state), and which is one of the typical mysterious 0+0^+ states in light nuclei, as a gas-like structure of three α\alpha particles, Bose-condensed into an identical s-wave function.Comment: revtex, 5 pages, 2 figures, submitted to Phys. Rev.

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    Alpha cluster condensation in 12C and 16O

    Get PDF
    A new α\alpha-cluster wave function is proposed which is of the α\alpha-particle condensate type. Applications to 12^{12}C and 16^{16}O show that states of low density close to the 3 resp. 4 α\alpha-particle threshold in both nuclei are possibly of this kind. It is conjectured that all self-conjugate 4nn nuclei may show similar features.Comment: 4 pages, 2 tables, 2 figure

    Atom trapping and guiding with a subwavelength-diameter optical fiber

    Full text link
    We suggest using an evanescent wave around a thin fiber to trap atoms. We show that the gradient force of a red-detuned evanescent-wave field in the fundamental mode of a silica fiber can balance the centrifugal force when the fiber diameter is about two times smaller than the wavelength of the light and the component of the angular momentum of the atoms along the fiber axis is in an appropriate range. As an example, the system should be realizable for Cesium atoms at a temperature of less than 0.29 mK using a silica fiber with a radius of 0.2 μ\mum and a 1.3-μ\mum-wavelength light with a power of about 27 mW.Comment: 5 pages, 5 figure

    Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments

    Full text link
    The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-energy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.Comment: to be published in Phys. Rev.

    Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2

    Full text link
    The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)2As2 has been investigated by inelastic neutron scattering over the full range from undoped to the overdoped regime. We observe damped magnetic fluctuations in the normal state of the optimally doped compound (x=0.06) that share a remarkable similarity with those in the paramagnetic state of the parent compound (x=0). In the overdoped superconducting compound (x=0.14), magnetic excitations show a gap-like behavior, possibly related to a topological change in the hole Fermi surface (Lifshitz transition), while the imaginary part of the spin susceptibility prominently resembles that of the overdoped cuprates. For the heavily overdoped, non-superconducting compound (x=0.24) the magnetic scattering disappears, which could be attributed to the absence of a hole Fermi-surface pocket observed by photoemission.Comment: 6 pages, 5 figures, published versio

    Neutron scattering study of magnetic ordering and excitations in the ternary rare-earth diborocarbide Ce^{11}B_2C_2

    Full text link
    Neutron scattering experiments have been performed on the ternary rare-earth diborocarbide Ce11^{11}B2_2C2_2. The powder diffraction experiment confirms formation of a long-range magnetic order at TN=7.3T_{\rm N} = 7.3 K, where a sinusoidally modulated structure is realized with the modulation vector q=[0.167(3),0.167(3),0.114(3)]{\bm q} = [0.167(3), 0.167(3), 0.114(3)]. Inelastic excitation spectra in the paramagnetic phase comprise significantly broad quasielastic and inelastic peaks centered at ω0,8\hbar \omega \approx 0, 8 and 65 meV. Crystalline-electric-field (CEF) analysis satisfactorily reproduces the observed spectra, confirming their CEF origin. The broadness of the quasielastic peak indicates strong spin fluctuations due to coupling between localized 4f4f spins and conduction electrons in the paramagnetic phase. A prominent feature is suppression of the quasielastic fluctuations, and concomitant growth of a sharp inelastic peak in a low energy region below TNT_{\rm N}. This suggests dissociation of the conduction and localized 4f4f electrons on ordering, and contrasts the presently observed incommensurate phase with spin-density-wave order frequently seen in heavy fermion compounds, such as Ce(Ru1x_{1-x}Lax_x)2_2Si2_2.Comment: accepted for publication in Phys. Rev.

    Reconstructing the solar integrated radial velocity using MDI/SOHO

    Full text link
    Searches for exoplanets with radial velocity techniques are increasingly sensitive to stellar activity. It is therefore crucial to characterize how this activity influences radial velocity measurements in their study of the detectability of planets in these conditions. In a previous work we simulated the impact of spots and plages on the radial velocity of the Sun. Our objective is to compare this simulation with the observed radial velocity of the Sun for the same period. We use Dopplergrams and magnetograms obtained by MDI/SOHO over one solar cycle to reconstruct the solar integrated radial velocity in the Ni line 6768 \AA. We also characterize the relation between the velocity and the local magnetic field to interpret our results. We obtain a stronger redshift in places where the local magnetic field is larger (and as a consequence for larger magnetic structures): hence we find a higher attenuation of the convective blueshift in plages than in the network. Our results are compatible with an attenuation of this blueshift by about 50% when averaged over plages and network. We obtain an integrated radial velocity with an amplitude over the solar cycle of about 8 m/s, with small-scale variations similar to the results of the simulation, once they are scaled to the Ni line. The observed solar integrated radial velocity agrees with the result of the simulation made in our previous work within 30%, which validates this simulation. The observed amplitude confirms that the impact of the convective blueshift attenuation in magnetic regions will be critical to detect Earth-mass planets in the habitable zone around solar-like stars.Comment: 17 pages, 11 figures, accepted in Astronomy and Astrophysic
    corecore