Searches for exoplanets with radial velocity techniques are increasingly
sensitive to stellar activity. It is therefore crucial to characterize how this
activity influences radial velocity measurements in their study of the
detectability of planets in these conditions. In a previous work we simulated
the impact of spots and plages on the radial velocity of the Sun. Our objective
is to compare this simulation with the observed radial velocity of the Sun for
the same period. We use Dopplergrams and magnetograms obtained by MDI/SOHO over
one solar cycle to reconstruct the solar integrated radial velocity in the Ni
line 6768 \AA. We also characterize the relation between the velocity and the
local magnetic field to interpret our results. We obtain a stronger redshift in
places where the local magnetic field is larger (and as a consequence for
larger magnetic structures): hence we find a higher attenuation of the
convective blueshift in plages than in the network. Our results are compatible
with an attenuation of this blueshift by about 50% when averaged over plages
and network. We obtain an integrated radial velocity with an amplitude over the
solar cycle of about 8 m/s, with small-scale variations similar to the results
of the simulation, once they are scaled to the Ni line. The observed solar
integrated radial velocity agrees with the result of the simulation made in our
previous work within 30%, which validates this simulation. The observed
amplitude confirms that the impact of the convective blueshift attenuation in
magnetic regions will be critical to detect Earth-mass planets in the habitable
zone around solar-like stars.Comment: 17 pages, 11 figures, accepted in Astronomy and Astrophysic