63 research outputs found

    Space-time coupling of shaped ultrafast ultraviolet pulses from an acousto-optic programmable dispersive filter

    Full text link
    A comprehensive experimental analysis of spatio-temporal coupling effects inherent to the acousto-optic programmable dispersive filter (AOPDF) is presented. Phase and amplitude measurements of the AOPDF transfer function are performed using spatially and spectrally resolved interferometry. Spatio-temporal and spatio-spectral coupling effects are presented for a range of shaped pulses that are commonly used in quantum control experiments. These effects are shown to be attributable to a single mechanism: a group-delay--dependent displacement of the shaped pulse. The physical mechanism is explained and excellent quantitative agreement between the measured and calculated coupling speed is obtained. The implications for quantum control experiments are discussed.Comment: 8 pages, 6 figures; accepted for publication within JOSA

    Ultrashort pulse characterization by spectral shearing interferometry with spatially chirped ancillae

    Full text link
    We report a new version of spectral phase interferometry for direct electric field reconstruction (SPIDER), which enables consistency checking through the simultaneous acquisition of multiple shears and offers a simple and precise calibration method. By mixing the test pulse with two spatially chirped ancilla fields we generate a single-shot interferogram which contains multiple shears, the spectral amplitude of the test pulse, and the reference phase, which is accurate for broadband pulses. All calibration parameters - shear, upconversion-frequency and reference phase position - can be accurately obtained from a single calibration trace.Comment: 11 pages, 7 figure

    Shaping speckles: spatio-temporal focussing of an ultrafast pulse through a multiply scattering medium

    Full text link
    The multiple scattering of coherent light is a problem of both fundamental and applied importance. In optics, phase conjugation allows spatial focussing and imaging through a multiply scattering medium; however, temporal control is nonetheless elusive, and multiple scattering remains a challenge for femtosecond science. Here, we report on the spatially and temporally resolved measurement of a speckle field produced by the propagation of an ultrafast optical pulse through a thick strongly scattering medium. Using spectral pulse shaping, we demonstrate the spatially localized temporal recompression of the output speckle to the Fourier-limit duration, offering an optical analogue to time-reversal experiments in the acoustic regime. This approach shows that a multiply scattering medium can be put to profit for light manipulation at the femtosecond scale, and has a diverse range of potential applications that includes quantum control, biological imaging and photonics.Comment: 7 pages, 3 figures, published in Nature Communication

    High frequency operation of an integrated electro-absorption modulator onto a vertical-cavity surface-emitting laser

    Get PDF
    We present in this paper the vertical integration of an electro-absorption modulator (EAM) onto a vertical-cavity surface-emitting laser (VCSEL). We discuss the design, fabrication, and measured characteristics of the combined VCSEL and EAM. We previously demonstrated a standalone EAM with an optical bandwidth around 30 GHz. In this paper we present for the first time an optical bandwidth of 30 GHz for an EAM integrated onto a VCSEL. This device exhibits single-mode operation and a very low chirp, below 0.1 nm, even with a modulation depth of 70% which makes this device very competitive for high-speed communications in data centers

    Manipulation de transitoires cohérents avec des impulsions mises en forme

    No full text
    Nous présentons les résultats de l'étude de la manipulation de transitoires cohérents avec des impulsions mises en forme. Une des applications potentielles est la possibilité d'inverser les transitoires cohérents pour en déduire la fonction d'onde de l'état excité

    Coherent transients as a highly sensitive probe for femtosecond pulse shapers

    No full text

    Nonlinear conversion in Cavity-Resonator Integrated Grating Filters

    No full text
    In this manuscript, we review the recent progress made in nonlinear parametric conversion in grating-coupled Fabry-PĂ©rot planar microcavities known as Cavity-Resonant Integrated Grating Filters (CRIGFs). Having previously established that enhanced second harmonic generation can be obtained in these devices, we discuss the design and experimental demonstrations of technical implementations allowing the achievement of critical coupling and improved conversion efficiencies
    • …
    corecore