41 research outputs found

    Tritium and helium release from beryllium pebbles neutron-irradiated up to 230appm tritium and 3000appm helium

    Get PDF
    Study of tritium and helium release from beryllium pebbles with diameters of 0.5 and 1 mm after high- dose neutron irradiation at temperatures of 6 86–96 8 K was performed. The release rate always has a single peak, and the peak temperatures at heating rates of 0.017 K/s and 0.117 K/s lie in the range of 1100–1350 K for both tritium and helium release. The total tritium release from 1 mm pebbles decreases considerably by increasing the irradiation temperature. The total tritium release from 0.5 mm pebbles is less than that from 1 mm pebbles and remains constant regardless of the irradiation temperature. At high irradiation temperatures, open channels are formed which contribute to the enhanced tritium release

    IFMIF suitability for evaluation of fusion functional materials

    Get PDF
    The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor

    Conceptual design of the liquid metal laboratory of the TECHNOFUSION facility

    Get PDF
    The application of liquid metal technology in fusion devices requires R&D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed

    From Fission towards Fusion

    No full text
    see attachmentJRC.E.3-Materials researc

    Reduced activation structural materials for fusion power plants - the european union program

    No full text
    The competition of fusion power plants with the renewable energy sources in the second half of the 21st century requires structural materials operating at high temperatures, and sufficient radiation resistance to ensure high plant efficiency and ava
    corecore