765 research outputs found
Recommended from our members
Comparing carbon sequestration in an oil reservoir to sequestration in a brine formation-field study
Geologic sequestration of CO2 in an oil reservoir is generally considered a different class than sequestration in
formations which contain only brine. In this paper, the significance and validity of this conceptualization is
examined by comparing the performance of CO2 injected into a depleted oil reservoir with the performance of
similar injection into non-oil bearing sandstones using a field test at Cranfield Field, Mississippi as a case study. The
differences considered are:
(1)Residual oil in the reservoir slightly reduces the CO2 breakthrough time and rate of pressure build up as
compared to a reservoir containing only brine, because under miscible conditions, more CO2 dissolves into oil
than in to brine.
(2)Dense wells provide improved assessment of the oil reservoir quality leading to improved prediction as well as
verification of CO2 movement in this reservoir as compared to the sparsely characterized brine leg. The value of
this information exceeds the risk of leakage.
Assessment of the difference made by the presence of residual oil requires a good understanding reservoir properties
to predict oil and gas distribution. Stratal slicing, attribute analysis and petrographic analyses are used to define the
reservoir architecture. Real-time pressure response at a dedicated observation well and episodic pressure mapping
has been conducted in the reservoir under flood since mid-2008; comparison measurements are planned for 2009 in
down-dip environments lacking hydrocarbons. Model results using GEM compositional simulator compare well in
general to measured reservoir response under CO2 flood; imperfections in model match of flood history document
uncertainties Time laps RST logging is underway to validate fluid composition and migration models. Monitoring
assessing the performance of the wells during the injection of CO2 suggests that the value of wells to provide field
data for characterization exceeds the risk of leakage.Bureau of Economic Geolog
Quality and validity of large animal experiments in stroke : a systematic review
An important factor for successful translational stroke research is study quality. Low-quality studies are at risk of biased results and effect overestimation, as has been intensely discussed for small animal stroke research. However, little is known about the methodological rigor and quality in large animal stroke models, which are becoming more frequently used in the field. Based on research in two databases, this systematic review surveys and analyses the methodological quality in large animal stroke research. Quality analysis was based on the Stroke Therapy Academic Industry Roundtable and the Animals in Research: Reporting In Vivo Experiments guidelines. Our analysis revealed that large animal models are utilized with similar shortcomings as small animal models. Moreover, translational benefits of large animal models may be limited due to lacking implementation of important quality criteria such as randomization, allocation concealment, and blinded assessment of outcome. On the other hand, an increase of study quality over time and a positive correlation between study quality and journal impact factor were identified. Based on the obtained findings, we derive recommendations for optimal study planning, conducting, and data analysis/reporting when using large animal stroke models to fully benefit from the translational advantages offered by these models
Recommended from our members
An atlas of CO2 storage potential in the nearshore waters of the Texas coast – American Recovery and Reinvestment Act – “Gulf of Mexico Miocene CO2 site characterization mega-transect”
Bureau of Economic Geolog
Multiorbital tunneling ionization of the CO molecule
We coincidently measure the molecular frame photoelectron angular
distribution and the ion sum-momentum distribution of single and double
ionization of CO molecules by using circularly and elliptically polarized
femtosecond laser pulses, respectively. The orientation dependent ionization
rates for various kinetic energy releases allow us to individually identify the
ionizations of multiple orbitals, ranging from the highest occupied to the next
two lower-lying molecular orbitals for various channels observed in our
experiments. Not only the emission of a single electron, but also the
sequential tunneling dynamics of two electrons from multiple orbitals are
traced step by step. Our results confirm that the shape of the ionizing
orbitals determine the strong laser field tunneling ionization in the CO
molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review
Letter
Recommended from our members
Potential Sinks for Geologic Storage of CO2 Generated in the Carolinas
This document summarizes a scoping study of the current state of knowledge of carbon storage options for our geographic area.
The focus is on one aspect of carbon capture and storage—identification of deep saline aquifers in which carbon dioxide (CO2
) generated in the Carolinas might be stored. The study does not address other aspects of CO2 storage projects, such as capture and compression of the gas, well construction and development, or injection. Transport of CO2 is touched upon in this study but has not been fully addressed.
The information contained in this document is primarily from review of published geologic literature and unpublished data. No field data collection has been completed as part of this study. Further work will be necessary to increase confidence in the suitability of the potential CO2 storage sites identified in this report. This study does not address the regulatory, environmental, or public policy issues associated with carbon storage, which are under development at this time.Duke Energy, Progress Energy, Santee Cooper Power, South Carolina Electric and Gas, Electric Power Research Institute (EPRI), Southern States Energy Board (SSEB)Bureau of Economic Geolog
Recommended from our members
Potential sinks for geologic storage of carbon dioxide generated by power plants in North and South Carolina
Duke Energy
Progress Energy
Santee Cooper Power
SCANA CorporationBureau of Economic Geolog
Report and preliminary results of R/V POSEIDON cruise POS481, Las Palmas (Canary Islands) - Las Palmas (Canary Islands), 15.03.2015 - 03.03.2015
VUV frequency combs from below-threshold harmonics
Recent demonstrations of high-harmonic generation (HHG) at very high
repetition frequencies (~100 MHz) may allow for the revolutionary transfer of
frequency combs to the vacuum ultraviolet (VUV). This advance necessitates
unifying optical frequency comb technology with strong-field atomic physics.
While strong-field studies of HHG have often focused on above-threshold
harmonic generation (photon energy above the ionization potential), for VUV
frequency combs an understanding of below-threshold harmonic orders and their
generation process is crucial. Here we present a new and quantitative study of
the harmonics 7-13 generated below and near the ionization threshold in xenon
gas. We show multiple generation pathways for these harmonics that are
manifested as on-axis interference in the harmonic yield. This discovery
provides a new understanding of the strong-field, below-threshold dynamics
under the influence of an atomic potential and allows us to quantitatively
assess the achievable coherence of a VUV frequency comb generated through below
threshold harmonics. We find that under reasonable experimental conditions
temporal coherence is maintained. As evidence we present the first explicit VUV
frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl
Sustainable deltas in the Anthropocene
What are the possible trajectories of delta development over the coming decades? Trajectories will be determined by the interactions of biophysical trends such as changing sediment supplies, subsidence due to compaction of sediment and climate change, along with key socio-economic trends of migration and urbanisation, agricultural intensification, demographic transition, economic growth and structural change of the economy. Knowledge and understanding of plausible trajectories can inform management choices for deltas in the Anthropocene, including new policy perspectives and innovative adaptation. The emergence of visionary delta management plans in some large deltas, such as the Bangladesh Delta Plan 2100, is an important and necessary component. This chapter synthesises the state of knowledge and highlights key elements of science that will inform decisions on future management of deltas.<br/
- …
