449 research outputs found
Radiative transfer and the energy equation in SPH simulations of star formation
We introduce and test a new and highly efficient method for treating the
thermal and radiative effects influencing the energy equation in SPH
simulations of star formation. The method uses the density, temperature and
gravitational potential of each particle to estimate a mean optical depth,
which then regulates the particle's heating and cooling. The method captures --
at minimal computational cost -- the effects of (i) the rotational and
vibrational degrees of freedom of H2, H2 dissociation, H0 ionisation, (ii)
opacity changes due to ice mantle melting, sublimation of dust, molecular
lines, H-, bound-free and free-free processes and electron scattering; (iv)
external irradiation; and (v) thermal inertia. The new algorithm reproduces the
results of previous authors and/or known analytic solutions. The computational
cost is comparable to a standard SPH simulation with a simple barotropic
equation of state. The method is easy to implement, can be applied to both
particle- and grid-based codes, and handles optical depths 0<tau<10^{11}.Comment: Submitted to A&A, recommended for publicatio
Assessment Erosion 3D Hazard with USLE and Surfer Tool: a Case Study of Sumani Watershed in West Sumatra Indonesia
Quantitative evaluation of soil erosion rate is an important basic to investigate and improve land use system, which has not been sufficiently conducted in Indonesia. The Universal Soil Loss Equation (USLE) and Erosion Three Dimension (E3D) in Surfer were used to identify characteristic of dominant erosion factors in Sumani Watershed in West Sumatra, Indonesia using data soil survey and monitoring sediment yield in outlet watershed. Climatology data from three stations were used to calculate Rainfall erosivity (R) factor. As many as101 sampling sites were used to investigate soil erodibility (K-factor) with physico-chemical laboratory analysis. Digital elevation model (DEM) of Sumani Watershed was used to calculate slope length and Steepness (LS-factor). Landsat TM imagery and field survey were used to determine crop management (C-factor) and conservation practices (P-factor). Calculating soil loss and map of USLE factor were determined by Kriging method in Surfer 9. Sumani Watershed had erosion hazard in criteria as: severe to extreme severe (26.23%), moderate (24.59%) and very low to low (49.18%). Annual average soil loss for Sumani watershed was 76.70 Mg ha-1 y-1 in 2011. Upland area was designated as having a severe to extreme severe erosion hazard compared to lowland which was designated as having very less to moderate. On the other land, soil eroded from upland were deposited in lowland. These results were verified by comparing one year’s sediment yield observation on the outlet of the watershed. Land use (C-factor), rainfall erosivity (R- factor), soil erodibility (K-factor), slope length and steepness (LS-factor) were dominant factors that affected soil erosion. Traditional soil conservation practices were applied by farmer for a long time such as terrace in Sawah. The USLE model in Surfer was used to identify specific regions susceptible to soil erosion by water and was also applied to identify suitable sites to conduct soil conservation planning in Sumani Watershed.[How to Cite : Aflizar, R Afrizal, T Masunaga. 2013. Assessment Erosion 3D Hazard with USLE and Surfer Tool: A Case Study of Sumani Watershed in West Sumatra Indonesia. J Trop Soils, 18 (1): 81-92. doi: 10.5400/jts.2013.18.1.81][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.81
Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements
The role of dipolar interactions among Ni nanoparticles (NP) embedded in an
amorphous SiO2/C matrix with different concentrations has been studied
performing ac magnetic susceptibility Chi_ac measurements. For very diluted
samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions,
the data are well described by the Neel-Arrhenius law. Increasing Ni
concentration to values up to 12.8 wt % Ni results in changes in the
Neel-Arrhenius behavior, the dipolar interactions become important, and need to
be considered to describe the magnetic response of the NPs system. We have
found no evidence of a spin-glasslike behavior in our Ni NP systems even when
dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table
From Molecular Cores to Planet-forming Disks with SIRTF
The SIRTF mission and the Legacy programs will provide coherent data bases
for extra-galactic and Galactic science that will rapidly become available to
researchers through a public archive. The capabilities of SIRTF and the six
legacy programs are described briefly. Then the cores to disks (c2d) program is
described in more detail. The c2d program will use all three SIRTF instruments
(IRAC, MIPS, and IRS) to observe sources from molecular cores to protoplanetary
disks, with a wide range of cloud masses, stellar masses, and star-forming
environments. The SIRTF data will stimulate many follow-up studies, both with
SIRTF and with other instruments.Comment: 6 pages, from Fourth Cologne-Bonn-Zermatt-Symposium, The Dense
Interstellar Matter in Galaxie
H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes [version 2; peer review: 2 approved]
Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals’ chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies’ staining properties for use in epifluorescent and confocal based fluorescent microscopy
Shock fragmentation model for gravitational collapse
A cloud of gas collapsing under gravity will fragment. We present a new
theory for this process, in which layers shocked gas fragment due to their
gravitational instability. Our model explains why angular momentum does not
inhibit the collapse process. The theory predicts that the fragmentation
process produces objects which are significantly smaller than most stars,
implying that accretion onto the fragments plays an essential role in
determining the initial masses of stars. This prediction is also consistent
with the hypothesis that planets can be produced by gravitational collapse.Comment: 22 pages, 3 figure
Protostellar Jet and Outflow in the Collapsing Cloud Core
We investigate the driving mechanism of outflows and jets in star formation
process using resistive MHD nested grid simulations. We found two distinct
flows in the collapsing cloud core: Low-velocity outflows (sim 5 km/s) with a
wide opening angle, driven from the first adiabatic core, and high-velocity
jets (sim 50 km/s) with good collimation, driven from the protostar.
High-velocity jets are enclosed by low-velocity outflow. The difference in the
degree of collimation between the two flows is caused by the strength of the
magnetic field and configuration of the magnetic field lines. The magnetic
field around an adiabatic core is strong and has an hourglass configuration.
Therefore, the low-velocity outflow from the adiabatic core are driven mainly
by the magnetocentrifugal mechanism and guided by the hourglass-like field
lines. In contrast, the magnetic field around the protostar is weak and has a
straight configuration owing to Ohmic dissipation in the high-density gas
region. Therefore, high-velocity jet from the protostar are driven mainly by
the magnetic pressure gradient force and guided by straight field lines.
Differing depth of the gravitational potential between the adiabatic core and
the protostar cause the difference of the flow speed. Low-velocity outflows
correspond to the observed molecular outflows, while high-velocity jets
correspond to the observed optical jets. We suggest that the protostellar
outflow and the jet are driven by different cores (the first adiabatic core and
protostar), rather than that the outflow being entrained by the jet.Comment: To appear in the proceedings of the "Protostellar Jets in Context"
conference held on the island of Rhodes, Greece (7-12 July 2008
Involving community health workers in disease-specific interventions: perspectives from The Gambia on the impact of this approach
Background
The Community Health Worker (CHW) programme is recognised as key for providing healthcare to communities, particularly in remote locations. CHWs are usually volunteers, nominated by their communities and trained to provide basic care and prevention for common illnesses. However, differences in disease-specific programmes aimed at meeting national agenda and perceived health needs of the community raises questions about the best approach to maximise the potential of this workforce.
Methods
This was an explorative qualitative study, ancillary to a larger trial on a malaria control intervention. In July 2017, 40 semi-structured interviews were conducted with 17 village health workers (VHWs), four community health nurses who supervise VHWs, and 19 key informants from the community. Analysis was concurrent to data collection and carried out using a deductive process for thematic analysis, with the aid of NVivo 11 Qualitative Analysis Software.
Results
There were three key aspects of the VHW role identified in this setting; (1) to give health advice; (2) to treat and refer patients; and (3) to support environmental cleaning. The VHWs’ involvement in the clinical trial impacted their role in several ways. Overall, this was perceived very positively by the community and the VHWs since it improved access to medication and training on how to treat malaria. However, involvement was also perceived to increase VHWs’ workload, and placed more emphasis on malaria over other common illnesses, creating a shift in the balance of their role between disease prevention and treatment.
Conclusions
VHWs are essential for the successful delivery of disease-specific activities at the community level. However, involving them in these activities has important implications for their everyday role. If carefully managed, it has the potential to improve their capacity to screen and treat specific diseases such as malaria
- …