1,353 research outputs found

    AUTOMATED SYSTEM FOR CONTINUOUS MICROALGAE CULTIVATION IN PHOTOBIOREACTORS

    Get PDF
    The objective of this work was to design a automate system for microalgae cultivation on a continuous modes in laboratory scale and allow its remote monitoring and control. For this, a sensor were developed is able to measure biomass concentration. The concentration sensor used the principle of light scattering, that is, by measuring the turbidity of the culture medium by the use of a set of phototransistor and green led. It presented an mean absolute percentage error of 8.46% during the experiment. A pH, temperature and light sensor were also installed. The control of all the sensors was accomplished by means of an microcontroller. For remote control and monitoring of the controller, a database was designed and implemented on a Raspberry Pi connected to the network. The graphics and data collected are available on an HTML page that allows changes in the control mode of the photobioreactor, for example by changing the dilution rates. The controller was able to operate the photobioreactor in batch mode, as well as to maintain the culture operating in continuous regime. The continuous production of microalgae biomass in a continuous regime showed productivity 74.5% higher than the traditional batch process and 28.2% higher than semicontinuous cultivation

    On improvements of Double Beta Decay using FQTDA Model

    Get PDF
    The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay 48Ca → 48Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation.Facultad de Ciencias ExactasInstituto de Física La Plat

    On improvements of Double Beta Decay using FQTDA Model

    Get PDF
    The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay 48Ca → 48Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation.Facultad de Ciencias ExactasInstituto de Física La Plat

    Bis(tetra­phenyl­phospho­nium) bis­[N-(trifluoro­methyl­sulfon­yl)dithio­carbimato(2−)-κ2 S,S′]zincate(II)

    Get PDF
    The title salt, (C24H20P)2[Zn(C2F3NO2S3)2], consists of a complex dianion and two tetra­phenyl­phospho­nium cations. The ZnII ion displays a distorted tetra­hedral coordination environment with four S atoms from two S,S′-chelated N-(trifluoro­methyl­sulfonyl­)dithio­carbimate anions. In the crystal, besides the ionic inter­action of the oppositely charged ions, inter­molecular C—H⋯O inter­actions between cations and anions are observed. One of the cations inter­acts with an inversion-related equivalent by π–π stacking between phenyl rings, with a centroid–centroid distance of 3.932 (4) Å

    SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology

    Get PDF
    Background The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. Results In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Conclusion Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net

    Areas of natural occurrence of melipona scutellaris Latreille, 1811(Hymenoptera: Apidae) in the state of Bahia, Brazil.

    Get PDF
    The bee Melipona scutellaris is considered the reared meliponine species with the largest distribution in the North and Northeast regions of Brazil, with records from the state of Rio Grande do Norte down to the state of Bahia. Considering the importance of this species in the generation of income for family agriculture and in the preservation of areas with natural vegetation, this study aimed at providing knowledge on the distribution of natural colonies of M. scutellaris in the state of Bahia. Literature information, interviews with stinglessbee beekeepers, and expeditions were conducted to confirm the natural occurrence of the species. A total of 102 municipalities showed records for M. scutellaris, whose occurrence was observed in areas ranging from sea level up to 1,200-meter height. The occurrence of this species in the state of Bahia is considered to be restricted to municipalities on the coastal area and the Chapada Diamantina with its rainforests. Geographic coordinates, elevation, climate and vegetation data were obtained, which allowed a map to be prepared for the area of occurrence in order to support conservation and management policies for the species

    Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    Get PDF
    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting SAXS experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 - 0.6) nm with polydispersivity given by sigma= (8.0 ± 0.2) nm. The SAXS, XRD and TEM experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 mm, obtained by SEM; aspect ratio=length/diameter ~10) were obtained at 85 ºC and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance spectra (FMR) and strain-stress curves of low filler´s loading composites (2% w/w of fillers) were determined as functions of the relative orientation respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR-resonance field and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.Fil: Landa, Romina Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Química Física de los Materiales del Medioambiente y Energía; Argentina;Fil: P Soledad Antonel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Química Física de los Materiales del Medioambiente y Energía; Argentina;Fil: Mariano M. Ruiz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Química Física de los Materiales del Medioambiente y Energía; Argentina;Fil: Oscar E Pérez. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Industrias;Fil: Alejandro Butera. Comisión Nacional de Energía Atómica;Fil: Guillermo Jorge. Universidad Nacional de General Sarmiento;Fil: Cristiano L. P. Oliveira. Instituto de Física, Universidade De São Paulo; Brasil;Fil: Martín Negri. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Industrias

    On improvements of Double Beta Decay using FQTDA Model

    Get PDF
    The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay 48Ca → 48Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation.Facultad de Ciencias ExactasInstituto de Física La Plat

    Modelos acoplados do IPCC-AR4 e o gradiente meridional de temperatua da superficie do mar no atlântico tropical : relaçoes com a precipitaçao no norte do nordeste do Brasil

    Get PDF
    Este artigo mostra como três modelos acoplados do Intergovernmental on Panel Climate Change - (IPCC-AR4), o FGOALS1. 0G – LASG do Institute of Atmospheric Physics of China, o GISSER da National Aeronautics Space Admnistration (NASA) e o GFDL_CM2 da National Oceanic and Atmospheric Administration (NOAA), simularam a variabilidade do gradiente meridional de Temperatura da Superfície do Mar (TSM), entre os meses de fevereiro a maio, no Atlântico Tropical (1901-1999). A precipitação durante a estação chuvosa (fevereiro a maio) no setor norte do Nordeste do Brasil (NEB) foi também analisada pelos três modelos e comparada com as observações. Os modelos GISSER e FGOALS1.0G mostraram melhor desempenho na simulação do sinal do gradiente meridional de TSM no Atlântico Tropical para o período de 1901 a 1999. Destaca-se que os modelos apresentaram um melhor desempenho na simulação da tendência decadal, conseguindo explicar entre 50% a 80% da variabilidade do gradiente, com a TSM do setor sul sendo mais bem simulada
    corecore