42 research outputs found

    Le citoyen, acteur du financement local ?

    Get PDF
    International audienc

    On making nD images well-composed by a self-dual local interpolation

    Get PDF
    International audienceNatural and synthetic discrete images are generally not well-composed, leading to many topological issues: connectivities in binary images are not equivalent, the Jordan Separation theorem is not true anymore, and so on. Conversely, making images well-composed solves those problems and then gives access to many powerful tools already known in mathematical morphology as the Tree of Shapes which is of our principal interest. In this paper, we present two main results: a characterization of 3D well-composed gray-valued images; and a counter-example showing that no local self-dual interpolation satisfying a classical set of properties makes well-composed images with one subdivision in 3D, as soon as we choose the mean operator to interpolate in 1D. Then, we briefly discuss various constraints that could be interesting to change to make the problem solvable in nD

    Use of a differential pressure transducer for the monitoring of soil volume change in cyclic triaxial test on unsaturated soils

    Get PDF
    A new experimental set-up using a differential pressure transducer was developed, that enables the monitoring of volume changes in cyclic triaxial tests on unsaturated soils. Calibration tests were performed in order to analyze the performance of the set-up, especially in terms of loading frequencies. Based on calibration results, a low frequency of 0.05 Hz was adopted for the tests carried out on the unsaturated loess from northern France. Five water contents were considered in the tests. The obtained results have confirmed the efficiency of the new system for volume change monitoring under cyclic loading. The effect of water content on the cyclic behavior of loess was clearly evidenced. Finally, some suggestions were made to improve the accuracy of the system

    Gene Therapy in a Humanized Mouse Model of Familial Hypercholesterolemia Leads to Marked Regression of Atherosclerosis

    Get PDF
    Familial hypercholesterolemia (FH) is an autosomal codominant disorder caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Homozygous FH patients (hoFH) have severe hypercholesterolemia leading to life threatening atherosclerosis in childhood and adolescence. Mice with germ line interruptions in the Ldlr and Apobec1 genes (Ldlr(-/-)Apobec1(-/-)) simulate metabolic and clinical aspects of hoFH, including atherogenesis on a chow diet.In this study, vectors based on adeno-associated virus 8 (AAV8) were used to deliver the gene for mouse Ldlr (mLDLR) to the livers of Ldlr(-/-)Apobec1(-/-) mice. A single intravenous injection of AAV8.mLDLR was found to significantly reduce plasma cholesterol and non-HDL cholesterol levels in chow-fed animals at doses as low as 3Ă—10(9) genome copies/mouse. Whereas Ldlr(-/-)Apobec1(-/-) mice fed a western-type diet and injected with a control AAV8.null vector experienced a further 65% progression in atherosclerosis over 2 months compared with baseline mice, Ldlr(-/-)Apobec1(-/-) mice treated with AAV8.mLDLR realized an 87% regression of atherosclerotic lesions after 3 months compared to baseline mice. Immunohistochemical analyses revealed a substantial remodeling of atherosclerotic lesions.Collectively, the results presented herein suggest that AAV8-based gene therapy for FH may be feasible and support further development of this approach. The pre-clinical data from these studies will enable for the effective translation of gene therapy into the clinic for treatment of FH

    Vision-Based Control of a Gough-Stewart Parallel Mechanism using Legs Observation

    No full text
    International audienc

    Critical sensitivity of flash gate dimension spread on electrical performances for advanced embedded memory

    No full text
    International audienceIn this paper a correlation between specific inline and electrical parameters has been deeply investigated. This study shows the impact of the flash gate intra-die and intra-wafer spread on the memory performances. A process recipe optimization has been evaluated to recover the effects of these variations. This optimization allows us to reduce the written threshold voltage intra-wafer spread by fifty percent

    3D characterization of pores in the cortical bone of human femur in the elderly at different locations as determined by synchrotron micro-computed tomography images

    No full text
    International audienceDiaphysis, inferior, and lateral superior regions of the femoral neck are subjected to diverse mechanical loads. Using micro-CT based on synchrotron radiation, three-dimensional morphology and connectivity of the pore network are location dependent, underlying different remodeling mechanisms. INTRODUCTION: The three-dimensional (3D) morphology and connectivity of the pore network at various locations in human femurs subjected to diverse mechanical loads were assessed using micro-CT based on synchrotron radiation. METHODS: The cortex from 20 human femurs (mean age, 78.3 ± 12.4 years) was taken from the diaphysis (D), the inferior (IN), and the lateral superior (LS) regions of the femoral neck. The voxel size of the 3D reconstructed image was 7.5 μm. Cortical thickness and pore volume/tissue volume (Po.V/TV), pore diameter (Po.Dm) and spacing (Po.Sp) were determined. The pore surface/pore volume ratio (Po.S/Po.V), the number of pores (Po.N), the degrees of anisotropy (DA), and the connectivity density (ConnD), the degree of mineralization (DMB) were also determined. RESULTS: The characteristics of the pore network in femoral cortical bone were found to be location dependent. There was greater porosity, Po.Dm, and Po.N, and more large (180-270 μm), extra-large (270-360 μm) and giant pores (>360 μm) in the LS compared to the IN and D. The difference in porosity in between the periosteal and endosteal layers was mostly due to an increase of Po.Dm rather than Po.N. There was a lower DMB of bone in the LS, which is consistent with a higher remodeling rate. CONCLUSION: The results provide evidence for large variations in the structure of the internal pore network in cortical bone. These variations could involve different underlying remodeling mechanisms

    Cephalometric assessment of craniofacial dysmorphologies in relation with Msx2 mutations in mouse

    No full text
    To determine the role of Msx2 in craniofacial morphology and growth, we used a mouse model and performed a quantitative morphological characterization of the Msx2 (-/-) and the Msx2 (+/-) phenotype using a 2D cephalometric analysis applied on micrographs.status: publishe

    Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation

    No full text
    Upon in vitro induction or in vivo implantation, the stem cells of the dental pulp display hallmarks of odontoblastic, osteogenic, adipogenic or neuronal cells. However, whether these phenotypes result from genuine multipotent cells or from coexistence of distinct progenitors is still an open question. Furthermore, determining whether a single cell-derived progenitor is capable of undergoing a differentiation cascade leading to tissue repair in situ is important for the development of cell therapy strategies. Three clonal pulp precursor cell lines (A4, C5, H8), established from embryonic ED18 first molars of mouse transgenic for a recombinant plasmid adeno-SV40, were induced to differentiate towards the odonto/osteogenic, chondrogenic or adipogenic programme. Expression of phenotypic markers of each lineage was evaluated by RT-PCR, histochemistry or immunocytochemistry. The clones were implanted into mandibular incisors or calvaria of adult mice. The A4 clone was capable of being recruited towards at least 3 mesodermal lineages in vitro and of contributing to dentin-like or bone formation, in vivo, thus behaving as a multipotent cell. In contrast, the C5 and H8 clones displayed a more restricted potential. Flow cytometric analysis revealed that isolated monopotent and multipotent clones could be distinguished by a differential expression of CD90. Altogether, isolation of these clonal lines allowed demonstrating the coexistence of multipotential and restricted-lineage progenitors in the mouse pulp. These cells may further permit unravelling specificities of the different types of pulp progenitors, hence facilitating the development of cell-based therapies of the dental pulp or other cranio-facial tissues
    corecore