67 research outputs found

    Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting

    Get PDF
    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression

    Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5â€Č-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5â€Č-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLÎČ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLÎČ strand displacement activity during LP–BER promotes the formation of stable 5â€Č-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion

    DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells

    Get PDF
    Human chromosomal fragile sites are regions of the genome that are prone to DNA breakage, and are classified as common or rare, depending on their frequency in the population. Common fragile sites frequently coincide with the location of genes involved in carcinogenic chromosomal translocations, suggesting their role in cancer formation. However, there has been no direct evidence linking breakage at fragile sites to the formation of a cancer-specific translocation. Here, we studied the involvement of fragile sites in the formation of RET/PTC rearrangements, which are frequently found in papillary thyroid carcinoma (PTC). These rearrangements are commonly associated with radiation exposure; however, most of the tumors found in adults are not linked to radiation. In this study, we provide structural and biochemical evidence that the RET, CCDC6 and NCOA4 genes participating in two major types of RET/PTC rearrangements, are located in common fragile sites FRA10C and FRA10G, and undergo DNA breakage after exposure to fragile site-inducing chemicals. Moreover, exposure of human thyroid cells to these chemicals results in the formation of cancer-specific RET/PTC rearrangements. These results provide the direct evidence for the involvement of chromosomal fragile sites in the generation of cancer-specific rearrangements in human cell

    Prenatal exposure to maternal stress and subsequent schizophrenia

    No full text

    Directed inhibition of nuclear import in cellular hypertrophy

    No full text
    Each nuclear pore is responsible for both nuclear import and export with a finite capacity for bidirectional transport across the nuclear envelope. It remains poorly understood how the nuclear transport pathway responds to increased demands for nucleocytoplasmic communication. A case in point is cellular hypertrophy in which increased amounts of genetic material need to be transported from the nucleus to the cytosol. Here, we report an adaptive down-regulation of nuclear import supporting such an increased demand for nuclear export. The induction of cardiac cell hypertrophy by phenylephrine or angiotensin II inhibited the nuclear translocation of H1 histones. The removal of hypertrophic stimuli reversed the hypertrophic phenotype and restored nuclear import. Moreover, the inhibition of nuclear export by leptomycin B rescued import. Hypertrophic reprogramming increased the intracellular GTP/GDP ratio and promoted the nuclear redistribution of the GTP-binding transport factor Ran, favoring export over import. Further, in hypertrophy, the reduced creatine kinase and adenylate kinase activities limited energy delivery to the nuclear pore. The reduction of activities was associated with the closure of the cytoplasmic phase of the nuclear pore preventing import at the translocation step. Thus, to overcome the limited capacity for nucleocytoplasmic transport, cells requiring increased nuclear export regulate the nuclear transport pathway by undergoing a metabolic and structural restriction of nuclear import

    Iron-Dependent Self-Assembly of Recombinant Yeast Frataxin: Implications for Friedreich Ataxia

    Get PDF
    Frataxin deficiency is the primary cause of Friedreich ataxia (FRDA), an autosomal recessive cardiodegenerative and neurodegenerative disease. Frataxin is a nuclear-encoded mitochondrial protein that is widely conserved among eukaryotes. Genetic inactivation of the yeast frataxin homologue (Yfh1p) results in mitochondrial iron accumulation and hypersensitivity to oxidative stress. Increased iron deposition and evidence of oxidative damage have also been observed in cardiac tissue and cultured fibroblasts from patients with FRDA. These findings indicate that frataxin is essential for mitochondrial iron homeostasis and protection from iron-induced formation of free radicals. The functional mechanism of frataxin, however, is still unknown. We have expressed the mature form of Yfh1p (mYfh1p) in Escherichia coli and have analyzed its function in vitro. Isolated mYfh1p is a soluble monomer (13,783 Da) that contains no iron and shows no significant tendency to self-associate. Aerobic addition of ferrous iron to mYfh1p results in assembly of regular spherical multimers with a molecular mass of ∌1.1 MDa (megadaltons) and a diameter of 13±2 nm. Each multimer consists of ∌60 subunits and can sequester >3,000 atoms of iron. Titration of mYfh1p with increasing iron concentrations supports a stepwise mechanism of multimer assembly. Sequential addition of an iron chelator and a reducing agent results in quantitative iron release with concomitant disassembly of the multimer, indicating that mYfh1p sequesters iron in an available form. In yeast mitochondria, native mYfh1p exists as monomer and a higher-order species with a molecular weight >600,000. After addition of (55)Fe to the medium, immunoprecipitates of this species contain >16 atoms of (55)Fe per molecule of mYfh1p. We propose that iron-dependent self-assembly of recombinant mYfh1p reflects a physiological role for frataxin in mitochondrial iron sequestration and bioavailability

    Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11–RAD50–XRS2 complex

    No full text
    Recombination induced by double-strand breaks (DSBs) in yeast leads to a higher proportion of expansions to contractions than does replication-associated tract length changes. Expansions are apparently dependent on the property of the repeat array to form hairpins, since DSB repair of a CAA(87) repeat induces only contractions of the repeat sequence. DSB-repair efficiency is reduced by 40% when DNA synthesis must traverse a CAG(98) array, as compared with a CAA(87) array. These data indicate that repair- associated DNA synthesis is inhibited by secondary structures formed by CAG(98) and that these structures promote repeat expansions during DSB repair. Overexpression of Mre11p or Rad50p suppresses the inhibition of DSB repair by CAG(98) and significantly increases the average size of expansions found at the recipient locus. Both effects are dependent on the integrity of the Mre11p–Rad50p–Xrs2p complex. The Mre11 complex thus appears to be directly involved in removing CAG or CTG hairpins that arise frequently during DNA synthesis accompanying gene conversion of these trinucleotide repeats
    • 

    corecore