130 research outputs found

    Time Dependent Surface Corrosion Analysis and Modelling of Automotive Steel Under a Simplistic Model of Variations in Environmental Parameters

    Get PDF
    This research presents time-dependent corrosion analysis of automotive steel utilised in a large military vehicle in real operating environment, followed by simulated environmental tests and simplistic surface corrosion modelling. Time-dependent surface corrosion accumulated on this specific component was observed to be approximately 250 µm thick, with the identification of surface contaminants such as chlorine and sulphur. Simulated environmental tests considering temperature and relative humidity variations were performed to evaluate quantitative corrosion damage to the structure of the vehicle. The relationship of various temperatures and relative humidity with respect to time, within the context of corrosion initiation and propagation, has been presented. A mathematical model to incorporate corrosion accumulation on the surfaces derived from the simulated environmental tests is presented

    Corrosion challenges towards a sustainable society

    Get PDF
    A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate-resilient energy systems and infrastructures brings with it a long-term direction, so as a result the long-term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind "Corrosion Challenges Towards a Sustainable Society" presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics

    Geometric morphometrics defines shape differences in the cortical area map of C57BL/6J and DBA/2J inbred mice

    Get PDF
    BACKGROUND: We previously described planar areal differences in adult mouse visual, somatosensory, and neocortex that collectively discriminated C57BL/6J and DBA/2J inbred strain identity. Here we use a novel application of established methods of two-dimensional geometric morphometrics to examine shape differences in the cortical area maps of these inbred strains. RESULTS: We used Procrustes superimposition to align a reliable set of landmarks in the plane of the cortical sheet from tangential sections stained for the cytochrome oxidase enzyme. Procrustes superimposition translates landmark configurations to a common origin, scales them to a common size, and rotates them to minimize an estimate of error. Remaining variation represents shape differences. We compared the variation in shape between C57BL/6J and DBA/2J relative to that within each strain using a permutation test of Goodall's F statistic. Significant differences in shape in the posterior medial barrel subfield (PMBSF), as well as differences in shape across primary sensory areas, characterize the cortical area maps of these common inbred, isogenic strains. CONCLUSION: C57BL/6J and DBA/2J have markedly different cortical area maps, in both size and shape. These differences suggest polymorphism in genetic factors underlying cortical specification, even between common isogenic strains. Comparing cortical phenotypes between normally varying inbred mice or between genetically modified mice can identify genetic contributions to cortical specification. Geometric morphometric analysis of shape represents an additional quantitative tool for the study of cortical development, regardless of whether it is studied from phenotype to gene or gene to phenotype

    Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    Get PDF
    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes

    Corrosion in CO 2

    No full text

    Effect of SO 2

    No full text
    • …
    corecore