139 research outputs found

    The genetic basis of host preference and resting behavior in the major African malaria vector, Anopheles arabiensis

    Get PDF
    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability”for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals. Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations

    Laparoscopic paraesophageal hernia repair with absorbable mesh: a systematic review

    Get PDF
    Background: Laparoscopic repair is the standard of care for patients with paraesophageal hernia (PEH). Different prosthetic materials have been proposed to bolster the hiatus thus theoretically minimizing the probability for hernia recurrence. The use of non-absorbable mesh has been reported however, their safety profile has been questioned because the noteworthy mesh-related complication rate. Opposite, absorbable mesh (synthetic and biologic) seems associated with mitigated mesh-related complications and comparable hernia recurrence in the short- and medium-term. Methods: PubMed, MEDLINE, EMBASE, Scopus, Google Scholar, and ClinicalTrials.gov were executed according to the PRISMA statement until May 2022. Primary endpoints were technical details and surgical outcomes of adult patients (>= 18 years old) that underwent laparoscopic PEH repair and crural reinforcement with absorbable mesh. The ROBINS-I tool was used to assess the methodological quality of included studies. Results: Thirty-nine studies (3,103 patients) were included. The age of the patient population ranged from 18 to 93 years old and 62.8% were females. Posterior cruroplasty was performed in all patients. U-shape (83.7%), circumferential (8.1%), keyhole (5.4%) and starburst (2.8%) mesh configuration were described. Different methods for mesh fixation (sutures vs. fibrin glue vs. absorbable tacks) were adopted while Nissen (75.1%) and Toupet (21.1%) fundoplication were mainly fashioned. The overall postoperative complication rate was 2.5%. Pulmonary and cardiac complication rates were 1.8% and 0.9%, respectively while in-hospital mortality was 0.2%. Postoperative follow-up ranged from 12 to 166 months. Mesh-related complication rate was 0.06% (esophageal stricture related to fibrosis). Hernia recurrence rate was 12.7% while re-do surgery was required in 1.9% of patients. Postoperative dysphagia rate was 5.1%. Discussion: Consensus concerning the optimal mesh material for crural buttressing is lacking. Given the potential for tissue ingrowth rather than encapsulation and reduced degree of perivisceral inflammation, absorbable meshes are mostly preferred over non-absorbable meshes. The use of absorbable mesh seems safe and effective with low overall and mesh-related complications, acceptable recurrence rate and low need for re-do surgery in the short/medium-term. Because heterogeneity related to different hernia characteristics, intraoperative technical variations (i.e., method for mesh fixation, etc.), definition of hernia recurrence and diverse follow-up, a conclusive evidence is still to be defined

    Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory studies have demonstrated that a variety of immune signaling pathways regulate malaria parasite infection in <it>Anopheles gambiae</it>, the primary vector species in Africa.</p> <p>Methods</p> <p>To begin to understand the importance of these associations under natural conditions, an association mapping approach was adopted to determine whether single nucleotide polymorphisms (SNPs) in selected immune signaling genes in <it>A. gambiae </it>collected in Mali were associated with the phenotype of <it>Plasmodium falciparum </it>infection.</p> <p>Results</p> <p>Three SNPs were identified in field-collected mosquitoes that were associated with parasite infection in molecular form-dependent patterns: two were detected in the <it>Toll5B </it>gene and one was detected in the gene encoding insulin-like peptide 3 precursor. In addition, one infection-associated <it>Toll5B </it>SNP was in linkage disequilibrium with a SNP in sequence encoding a mitogen-activated protein kinase that has been associated with Toll signaling in mammalian cells. Both <it>Toll5B </it>SNPs showed divergence from Hardy-Weinberg equilibrium, suggesting that selection pressure(s) are acting on these loci.</p> <p>Conclusions</p> <p>Seven of these eight infection-associated and linked SNPs alter codon frequency or introduce non-synonymous changes that would be predicted to alter protein structure and, hence, function, suggesting that these SNPs could alter immune signaling and responsiveness to parasite infection.</p

    Clarification of anomalies in the application of a 2La molecular karyotyping method for the malaria vector Anopheles gambiae

    Get PDF
    BACKGROUND:Chromosomal inversions have been considered to be potentially important barriers to gene flow in many groups of animals through their effect on recombination suppression in heterokaryotypic individuals. Inversions can also enhance local adaptation in different groups of organisms and may often represent species-specific differences among closely related taxa. We conducted a study to characterize the 2La inversion karyotypes of An. gambiae sensu stricto mosquitoes sampled from the Kilombero Valley (Tanzania) using a newly designed PCR assay.RESULTS:We frequently encountered a (687 bp) fragment which was only present in the Kilombero Valley populations. Laboratory crossing between An. gambiae s.s. from Njage (Tanzania) and Kisumu (Western Kenya) populations resulted in F1 offspring carrying the observed fragment. Karyotype analysis did not indicate differences in 2La region chromosome morphology between individuals carrying the PCR fragments, the 207 bp fragment, or the 687 bp fragement.CONCLUSION:The observed insertion/deletion polymorphism within the region amplified by the 2La PCR diagnostic test may confound the interpretation of this assay and should be well considered in order to maintain an acceptable level of reliability in studies using this assay to describe the distribution and frequency of the 2La inversion among natural populations of An. gambiae s.

    Central precocious puberty during COVID-19 pandemic and sleep disturbance: an exploratory study

    Get PDF
    Background: Increased incidence of central precocious puberty (CPP) after coronavirus infectious disease-19 lockdown has been reported. Our study aims in investigating changes in CPP rates and in sleep patterns in CPP and healthy controls. Methods: CPP were retrospectively evaluated from April 2020 to April 2021. Parents of girls diagnosed with CPP during lockdown and of matched healthy controls filled out a questionnaire about sleep disturbances (SDSC questionnaire) and sleep schedules. Results: Thirty-five CPP and 37 controls completed the survey. Incidence of new CPP cases significantly increased in 2020–2021 compared to 2017–2020 (5:100 vs 2:100, p = 0.02). Sleep disturbance rates did not differ between CPP and healthy controls before lockdown. During lockdown, CPP reported higher rates of sleep disturbs for total score (p = 0.005), excessive somnolence (p = 0.049), sleep breathing disorders (p = 0.049), and sleep–wake transition disorders (p = 0.005). Moreover, CPP group more frequently shifted toward later bedtime (p = 0.03) during lockdown compared to controls. Hours of sleep and smartphone exposure around bedtime did not differ between groups. Conclusions: Our study confirms the observation of increased incidence of CPP after lockdown measures. Additionally, CPP showed higher rates of sleep disturbances and later bedtime compared to controls. The causality link between sleep disturbances and CPP should be further investigated to gain knowledge in this association

    Morphological Differentiation May Mediate Mate-Choice between Incipient Species of Anopheles gambiae s.s.

    Get PDF
    The M and S molecular forms of Anopheles gambiae s.s. have been considered incipient species for more than ten years, yet the mechanism underlying assortative mating of these incipient species has remained elusive. The discovery of the importance of harmonic convergence of wing beat frequency in mosquito mating and its relation to wing size have laid the foundation for exploring phenotypic divergence in wing size of wild populations of the two forms. In this study, wings from field collected mosquitoes were measured for wing length and wing width from two parts of the sympatric distribution, which differ with respect to the strength of assortative mating. In Mali, where assortative mating is strong, as evidenced by low rates of hybridization, mean wing lengths and wing widths were significantly larger than those from Guinea-Bissau. In addition, mean wing widths in Mali were significantly different between molecular forms. In Guinea-Bissau, assortative mating appears comparatively reduced and wing lengths and widths did not differ significantly between molecular forms. The data presented in this study support the hypothesis that wing beat frequency may mediate assortative mating in the incipient species of A. gambiae and represent the first documentation of a morphological difference between the M and S molecular forms

    A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C

    Get PDF
    Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs

    Ecological and genetic relationships of the Forest-M form among chromosomal and molecular forms of the malaria vector Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae sensu stricto</it>, one of the principal vectors of malaria, has been divided into two subspecific groups, known as the M and S molecular forms. Recent studies suggest that the M form found in Cameroon is genetically distinct from the M form found in Mali and elsewhere in West Africa, suggesting further subdivision within that form.</p> <p>Methods</p> <p>Chromosomal, microsatellite and geographic/ecological evidence are synthesized to identify sources of genetic polymorphism among chromosomal and molecular forms of the malaria vector <it>Anopheles gambiae s.s</it>.</p> <p>Results</p> <p>Cytogenetically the Forest M form is characterized as carrying the standard chromosome arrangement for six major chromosomal inversions, namely 2La, 2Rj, 2Rb, 2Rc, 2Rd, and 2Ru. Bayesian clustering analysis based on molecular form and chromosome inversion polymorphisms as well as microsatellites describe the Forest M form as a distinct population relative to the West African M form (Mopti-M form) and the S form. The Forest-M form was the most highly diverged of the <it>An. gambiae s.s</it>. groups based on microsatellite markers. The prevalence of the Forest M form was highly correlated with precipitation, suggesting that this form prefers much wetter environments than the Mopti-M form.</p> <p>Conclusion</p> <p>Chromosome inversions, microsatellite allele frequencies and habitat preference all indicate that the Forest M form of <it>An. gambiae </it>is genetically distinct from the other recognized forms within the taxon <it>Anopheles gambiae sensu stricto</it>. Since this study covers limited regions of Cameroon, the possibility of gene flow between the Forest-M form and Mopti-M form cannot be rejected. However, association studies of important phenotypes, such as insecticide resistance and refractoriness against malaria parasites, should take into consideration this complex population structure.</p

    Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali

    Get PDF
    BACKGROUND: Anopheles gambiae sensu stricto (s.s.) is a primary vector of Plasmodium falciparum in sub-Saharan Africa. Although some physiological differences among molecular and chromosomal forms of this species have been demonstrated, the relative susceptibility to malaria parasite infection among them has not been unequivocally shown. The objective of this study was to investigate P. falciparum circumsporozoite protein infection (CSP) positivity among An. gambiae s.s. chromosomal and molecular forms. METHODS: Wild An. gambiae from two sites Kela (n = 464) and Sidarebougou (n = 266) in Mali were screened for the presence of P. falciparum CSP using an enzyme-linked immunosorbent assay (ELISA). Samples were then identified to molecular form using multiple PCR diagnostics (n = 713) and chromosomal form using chromosomal karyotyping (n = 419). RESULTS: Of 730 An. gambiae sensu lato (s.l.) mosquitoes, 89 (12.2%) were CSP ELISA positive. The percentage of positive mosquitoes varied by site: 52 (11.2%) in Kela and 37 (13.9%) in Sidarebougou. Eighty-seven of the positive mosquitoes were identified to molecular form and they consisted of nine Anopheles arabiensis (21.4%), 46 S (10.9%), 31 M (12.8%), and one MS hybrid (14.3%). Sixty of the positive mosquitoes were identified to chromosomal form and they consisted of five An. arabiensis (20.0%), 21 Savanna (15.1%), 21 Mopti (30.4%), 11 Bamako (9.2%), and two hybrids (20.0%). DISCUSSION: In this collection, the prevalence of P. falciparum infection in the M form was equivalent to infection in the S form (no molecular form differential infection). There was a significant differential infection by chromosomal form such that, P. falciparum infection was more prevalent in the Mopti chromosomal forms than in the Bamako or Savanna forms; the Mopti form was also the most underrepresented in the collection. Continued research on the differential P. falciparum infection of An. gambiae s.s. chromosomal and molecular forms may suggest that Plasmodium – An. gambiae interactions play a role in malaria transmission
    • …
    corecore