337 research outputs found

    Map of Plasmid pRAL1.

    Get PDF
    Map of Plasmid pRAL1

    The physical and genetic map of mtDNA from Neurospora crassa strain 74-OR23-1A.

    Get PDF
    The physical and genetic map of mtDNA from Neurospora crassa strain 74-ORS23-1A

    The physical and genetic map of mtDNA from Neurospora crassa strain 74-OR23-1A.

    Get PDF
    The physical and genetic map of mtDNA from Neurospora crassa strain 74-ORS23-1A

    Requirement of a Membrane Potential for the Posttranslational Transfer of Proteins into Mitochondsria

    Get PDF
    Posttranslational transfer of most precursor proteins into mitochondria is dependent on energization of the mitochondria. Experiments were carried out to determine whether the membrane potential or the intramitochondrial ATP is the immediate energy source. Transfer in vitro of precursors to the ADP/ATP carrier and to ATPase subunit 9 into isolated Neurospora mitochondria was investigated. Under conditions where the level of intramitochondrial ATP was high and the membrane potential was dissipated, import and processing of these precursor proteins did not take place. On the other hand, precursors were taken up and processed when the intramitochondrial ATP level was low, but the membrane potential was not dissipated. We conclude that a membrane potential is involved in the import of those mitochondrial precursor proteins which require energy for intracellular translocatio

    Database for bacterial group II introns

    Get PDF
    The Database for Bacterial Group II Introns (http://webapps2.ucalgary.ca/~groupii/index.html#) provides a catalogue of full-length, non-redundant group II introns present in bacterial DNA sequences in GenBank. The website is divided into three sections. The first section provides general information on group II intron properties, structures and classification. The second and main section lists information for individual introns, including insertion sites, DNA sequences, intron-encoded protein sequences and RNA secondary structure models. The final section provides tools for identification and analysis of intron sequences. These include a step-by-step guide to identify introns in genomic sequences, a local BLAST tool to identify closest intron relatives to a query sequence, and a boundary-finding tool that predicts 5′ and 3′ intron–exon junctions in an input DNA sequence. Finally, selected intron data can be downloaded in FASTA format. It is hoped that this database will be a useful resource not only to group II intron and RNA researchers, but also to microbiologists who encounter these unexpected introns in genomic sequences

    Localization of a bacterial group II intron-encoded protein in human cells

    Get PDF
    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.This work was supported by research grants CSD 2009–0006 from the Consolider-Ingenio, BIO2011-24401 and BIO2014-51953-P from the Spanish Ministerio de Economía y Competitividad all including ERDF (European Regional Development Funds). We thank Dr. Antonio Barrientos Durán for technical advice. MRC was supported by an FPI Ph.D grant. J.L.G.P´s laboratory is supported by CICE-FEDER-P09-CTS-4980, CICE-FEDER-P12-CTS-2256, Plan Nacional de I+D+I 2008–2011 and 2013–2016 (FIS-FEDER-PI11/01489 and FIS-FEDER-PI14/02152), PCIN-2014-115-ERA-NET NEURON II, the European Research Council (ERC-Consolidator ERC-STG-2012-233764) and by an International Early Career Scientist grant from the Howard Hughes Medical Institute (IECS-55007420).Peer Reviewe

    Group II Introns Break New Boundaries: Presence in a Bilaterian's Genome

    Get PDF
    Group II introns are ribozymes, removing themselves from their primary transcripts, as well as mobile genetic elements, transposing via an RNA intermediate, and are thought to be the ancestors of spliceosomal introns. Although common in bacteria and most eukaryotic organelles, they have never been reported in any bilaterian animal genome, organellar or nuclear. Here we report the first group II intron found in the mitochondrial genome of a bilaterian worm. This location is especially surprising, since animal mitochondrial genomes are generally distinct from those of plants, fungi, and protists by being small and compact, and so are viewed as being highly streamlined, perhaps as a result of strong selective pressures for fast replication while establishing germ plasm during early development. This intron is found in the mtDNA of an annelid worm, (an undescribed species of Nephtys), where the complete sequence revealed a 1819 bp group II intron inside the cox1 gene. We infer that this intron is the result of a recent horizontal gene transfer event from a viral or bacterial vector into the mitochondrial genome of Nephtys sp. Our findings hold implications for understanding mechanisms, constraints, and selective pressures that account for patterns of animal mitochondrial genome evolutio

    Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages

    Get PDF
    o determine the genetic composition of the first VanA-type plasmid (pIP816) reported, which was isolated from a clinical Enterococcus faecium (BM4147) strain in France in 1986, and to reveal the genetic units responsible for the dissemination of the vanA gene cluster by comparisons with current, published and additionally generated vanA-spanning plasmid sequences obtained from a heterogeneous E. faecium strain collection (n = 28).Plasmid sequences were produced by shotgun sequencing using ABI dye chemistry and primer walking, and were subsequently annotated. Comparative sequence analysis of the vanA region was done with published plasmids, with a partial vanA plasmid (pVEF4) reported here and to >140 kb of sequence obtained from a collection of vanA-harbouring plasmid fragments. Bioinformatic analyses revealed that pIP816 from 1986 and contemporary vanA plasmids shared a conserved genetic fragment of 25 kb, spanning the 10.85 kb vanA cluster encoded by Tn1546, and that the larger unit is present in both clinical and animal complexes of E. faecium. A new group II intron in pVEF4 was characterized. Comparative DNA analyses suggest that Tn1546 disseminates in and between clonal complexes of E. faecium as part of a larger genetic unit, possibly as a composite transposon flanked by IS1216 elements
    corecore