7 research outputs found

    Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, U.S.A.

    No full text
    A sequential extraction technique for compartmentalizing mercury (Hg) in leaves was developed based on a water extraction of Hg from the leaf surface followed by a solvent extraction of the cuticle. The bulk of leaf Hg was found in the tissue compartment (90–96%) with lesser amounts in the surface and cuticle compartments. Total leaf concentrations of Hg varied among species and was most closely correlated with the number of stomates per sample, supporting the hypothesis that stomatal uptake of atmospheric Hg (most likely Hg<sup>0</sup>) is a potential uptake pathway. Mercury concentrations in leaves were monitored from emergence to senescence and showed a strong positive correlation with leaf age. Leaves accumulated Hg throughout the growing season; the highest uptake rates coincided with periods of high photosynthetic activity. Concentrations of Hg in leaf tissue increased steadily throughout the season, but no such trends were observed for surficial or cuticular accumulation. Factors affecting the variability of Hg in leaves were analyzed to improve protocols for the potential use of leaves as passive monitors of atmospheric Hg. Results show that total leaf Hg concentrations are affected by leaf age and leaf placement in the crown

    A vegetation control on seasonal variations in global atmospheric mercury concentrations

    Get PDF
    International audienceAnthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth’s surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO2_2, which is known to exhibit a minimum in summer when CO2_2 is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production

    Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions

    No full text
    corecore