430 research outputs found

    Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems

    Get PDF
    Freely falling point-like objects converge towards the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum object such as a hydrogen atom prepared in a high principal-quantum-number stretch state, i.e., a circular Rydberg atom, is predicted to fall more slowly that a classical point-like object, when both objects are dropped from the same height from above the Earth. This indicates that, apart from "quantum jumps," the atom exhibits a kind of "quantum incompressibility" during free fall in inhomogeneous, tidal gravitational fields like those of the Earth. A superconducting ring-like system with a persistent current circulating around it behaves like the circular Rydberg atom during free fall. Like the electronic wavefunction of the freely falling atom, the Cooper-pair wavefunction is "quantum incompressible." The ions of the ionic lattice of the superconductor, however, are not "quantum incompressible," since they do not possess a globally coherent quantum phase. The resulting difference during free fall in the response of the nonlocalizable Cooper pairs of electrons and the localizable ions to inhomogeneous gravitational fields is predicted to lead to a charge separation effect, which in turn leads to a large repulsive Coulomb force that opposes the convergence caused by the tidal, attractive gravitational force on the superconducting system. A "Cavendish-like" experiment is proposed for observing the charge separation effect induced by inhomogeneous gravitational fields in a superconducting circuit. This experiment would demonstrate the existence of a novel coupling between gravity and electricity via macroscopically coherent quantum matter.Comment: `2nd Vienna Symposium for the Foundations of Modern Physics' Festschrift MS for Foundations of Physic

    Simultaneous Multi-band Radio & X-ray Observations of the Galactic Center Magnetar SGR 1745−-2900

    Get PDF
    We report on multi-frequency, wideband radio observations of the Galactic Center magnetar (SGR 1745−-2900) with the Green Bank Telescope for ∼\sim100 days immediately following its initial X-ray outburst in April 2013. We made multiple simultaneous observations at 1.5, 2.0, and 8.9 GHz, allowing us to examine the magnetar's flux evolution, radio spectrum, and interstellar medium parameters (such as the dispersion measure (DM), the scattering timescale and its index). During two epochs, we have simultaneous observations from the Chandra X-ray Observatory, which permitted the absolute alignment of the radio and X-ray profiles. As with the two other radio magnetars with published alignments, the radio profile lies within the broad peak of the X-ray profile, preceding the X-ray profile maximum by ∼\sim0.2 rotations. We also find that the radio spectral index γ\gamma is significantly negative between ∼\sim2 and 9 GHz; during the final ∼\sim30 days of our observations γ∼−1.4\gamma \sim -1.4, which is typical of canonical pulsars. The radio flux has not decreased during this outburst, whereas the long-term trends in the other radio magnetars show concomitant fading of the radio and X-ray fluxes. Finally, our wideband measurements of the DMs taken in adjacent frequency bands in tandem are stochastically inconsistent with one another. Based on recent theoretical predictions, we consider the possibility that the dispersion measure is frequency-dependent. Despite having several properties in common with the other radio magnetars, such as LX,qui/Lrot≲1L_{\textrm{X,qui}}/L_{\textrm{rot}} \lesssim 1, an increase in the radio flux during the X-ray flux decay has not been observed thus far in other systems.Comment: 15 pages, 9 figures, 3 tables; accepted to Ap

    Using Abrupt Changes in Magnetic Susceptibility within Type-II Superconductors to Explore Global Decoherence Phenomena

    Full text link
    A phenomenon of a periodic staircase of macroscopic jumps in the admitted magnetic field has been observed, as the magnitude of an externally applied magnetic field is smoothly increased or decreased upon a superconducting (SC) loop of type II niobium-titanium wire which is coated with a non-superconducting layer of copper. Large temperature spikes were observed to occur simultaneously with the jumps, suggesting brief transitions to the normal state, caused by en masse motions of Abrikosov vortices. An experiment that exploits this phenomenon to explore the global decoherence of a large superconducting system will be discussed, and preliminary data will be presented. Though further experimentation is required to determine the actual decoherence rate across the superconducting system, multiple classical processes are ruled out, suggesting that jumps in magnetic flux are fully quantum mechanical processes which may correspond to large group velocities within the global Cooper pair wavefunction.Comment: 13 pages, 4 figures, part of proceedings for FQMT 2011 conference in Prague, Czech Republi

    A strongly magnetized pulsar within grasp of the Milky Way's supermassive black hole

    Full text link
    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of intense star formation near the black hole a few Myr ago, which might have left behind a young neutron star traveling deep into SgrA*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. Thanks to a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin period and its derivative (P=3.7635537(2) s and \dot{P} = 6.61(4)x10^{-12} s/s), confirmed by quasi simultaneous radio observations performed with the Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*. Simulations of its possible motion around SgrA* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region, might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.Comment: ApJ Letters in pres

    G28.17+0.05: An unusual giant HI cloud in the inner Galaxy

    Get PDF
    New 21 cm HI observations have revealed a giant HI cloud in the Galactic plane that has unusual properties. It is quite well defined, about 150 pc in diameter at a distance of 5 kpc, and contains as much as 100,000 Solar Masses of atomic hydrogen. The outer parts of the cloud appear in HI emission above the HI background, while the central regions show HI self-absorption. Models which reproduce the observations have a core with a temperature <40 K and an outer envelope as much as an order of magnitude hotter. The cold core is elongated along the Galactic plane, whereas the overall outline of the cloud is approximately spherical. The warm and cold parts of the HI cloud have a similar, and relatively large, line width of approximately 7 km/s. The cloud core is a source of weak, anomalously-excited 1720 MHz OH emission, also with a relatively large line width, which delineates the region of HI self-absorption but is slightly blue-shifted in velocity. The intensity of the 1720 MHz OH emission is correlated with N(H) derived from models of the cold core. There is 12CO emission associated with the cloud core. Most of the cloud mass is in molecules, and the total mass is > 200,000 Solar Masses. In the cold core the HI mass fraction may be 10 percent. The cloud has only a few sites of current star formation. There may be about 100 more objects like this in the inner Galaxy; every line of sight through the Galactic plane within 50 degrees of the Galactic center probably intersects at least one. We suggest that G28.17+0.05 is a cloud being observed as it enters a spiral arm and that it is in the transition from the atomic to the molecular state.Comment: 35 pages, inludes 12 figure

    Acceleration of Galactic Cosmic Rays in the Interstellar Medium

    Full text link
    Challenges have arisen to diffusive shock acceleration as the primary means to accelerate galactic cosmic rays (GCRs) in the interstellar medium. Diffusive shock acceleration is also under challenge in the heliosphere, where at least the simple application of diffusive shock acceleration cannot account for observations. In the heliosphere, a new acceleration mechanism has been invented—a pump mechanism, driven by ambient turbulence, in which particles are pumped up in energy out of a low-energy core particle population through a series of adiabatic compressions and expansions—that can account for observations not only at shocks but in quiet conditions in the solar wind and throughout the heliosheath. In this paper, the pump mechanism is applied to the acceleration of GCRs in the interstellar medium. With relatively straightforward assumptions about the magnetic field in the interstellar medium, and how GCRs propagate in this field, the pump mechanism yields (1) the overall shape of the GCR spectrum, a power law in particle kinetic energy, with a break at the so-called knee in the GCR spectrum to a slightly steeper power-law spectrum. (2) The rigidity dependence of the H/He ratio observed from the PAMELA satellite instrument.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98584/1/0004-637X_744_2_127.pd

    Ordered magnetic fields around radio galaxies: evidence for interaction with the environment

    Full text link
    We present detailed imaging of Faraday rotation and depolarization for the radio galaxies 0206+35, 3C 270, 3C 353 and M 84, based on Very Large Array observations at multiple frequencies in the range 1365 to 8440 MHz. This work suggests a more complex picture of the magneto-ionic environments of radio galaxies than was apparent from earlier work. All of the sources show spectacular banded rotation measure (RM) structures with contours of constant RM perpendicular to the major axes of their radio lobes. We give a comprehensive description of the banded RM phenomenon and present an initial attempt to interpret it as a consequence of interactions between the sources and their surroundings. We show that the material responsible for the Faraday rotation is in front of the radio emission and that the bands are likely to be caused by magnetized plasma which has been compressed by the expanding radio lobes. A two-dimensional magnetic structure in which the field lines are a family of ellipses draped around the leading edge of the lobe can produce RM bands in the correct orientation for any source orientation. We also report the first detections of rims of high depolarization at the edges of the inner radio lobes of M 84 and 3C 270. These are spatially coincident with shells of enhanced X-ray surface brightness, in which both the field strength and the thermal gas density are likely to be increased by compression.Comment: 21 pages, 15 figures, accepted for publication in MNRAS. Full resolution paper available at http://www.ira.inaf.it/~guidetti/bands/ Subjects: Astrophysics (astro-ph
    • …
    corecore