707 research outputs found

    Resting sympathetic baroreflex sensitivity in subjects with low and high tolerance to central hypovolemia induced by lower body negative pressure

    Get PDF
    Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock). The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA) and sympathetic baroreflex sensitivity (BRS) are attenuated in male and female subjects who have low tolerance (LT) to central hypovolemia induced by lower body negative pressure (LBNP). MSNA and diastolic arterial pressure (DAP) were recorded in 47 human subjects who subsequently underwent LBNP to tolerance (onset of presyncopal symptoms). LT subjects experienced presyncopal symptoms prior to completing LBNP of -60 mm Hg, and subjects with high tolerance (HT) experienced presyncopal symptoms after completing LBNP after -60 mmHg. Contrary to our hypothesis, resting MSNA burst incidence was not different between LT and HT subjects, and was not related to time to presyncope. BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n= 9; HT: n=28), and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts•(100 beats)-1•mmHg-1, p=0.29). We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS

    Heart Rate Variability during Simulated Hemorrhage with Lower Body Negative Pressure in High and Low Tolerant Subjects

    Get PDF
    Heart rate variability (HRV) decreases during hemorrhage, and has been proposed as a new vital sign to assess cardiovascular stability in trauma patients. The purpose of this study was to determine if any of the HRV metrics could accurately distinguish between individuals with different tolerance to simulated hemorrhage. Specifically, we hypothesized that (1) HRV would be similar in low tolerant (LT) and high tolerant (HT) subjects at presyncope when both groups are on the verge of hemodynamic collapse; and (2) HRV could distinguish LT subjects at presyncope from hemodynamically stable HT subjects (i.e., at a submaximal level of hypovolemia). Lower body negative pressure (LBNP) was used as a model of hemorrhage in healthy human subjects, eliciting central hypovolemia to the point of presyncopal symptoms (onset of hemodynamic collapse). Subjects were classified as LT if presyncopal symptoms occurred during the −15 to −60 mmHg levels of LBNP, and HT if symptoms occurred after LBNP of −60 mmHg. A total of 20 HRV metrics were derived from R–R interval measurements at the time of presyncope, and at one level prior to presyncope (submax) in LT and HT groups. Only four HRV metrics (Long-range Detrended Fluctuation Analysis, Forbidden Words, Poincaré Plot Descriptor Ratio, and Fractal Dimensions by Curve Length) supported both hypotheses. These four HRV metrics were evaluated further for their ability to identify individual LT subjects at presyncope when compared to HT subjects at submax. Variability in individual LT and HT responses was so high that LT responses overlapped with HT responses by 85–97%. The sensitivity of these HRV metrics to distinguish between individual LT from HT subjects was 6–33%, and positive predictive values were 40–73%. These results indicate that while a small number of HRV metrics can accurately distinguish between LT and HT subjects using group mean data, individual HRV values are poor indicators of tolerance to hypovolemia

    Sympathetic Responses to Central Hypovolemia: New Insights from Microneurographic Recordings

    Get PDF
    Hemorrhage remains a major cause of mortality following traumatic injury in both military and civilian settings. Lower body negative pressure (LBNP) has been used as an experimental model to study the compensatory phase of hemorrhage in conscious humans, as it elicits central hypovolemia like that induced by hemorrhage. One physiological compensatory mechanism that changes during the course of central hypovolemia induced by both LBNP and hemorrhage is a baroreflex-mediated increase in muscle sympathetic nerve activity (MSNA), as assessed with microneurography. The purpose of this review is to describe recent results obtained using microneurography in our laboratory as well as those of others that have revealed new insights into mechanisms underlying compensatory increases in MSNA during progressive reductions in central blood volume and how MSNA is altered at the point of hemodynamic decompensation. We will also review recent work that has compared direct MSNA recordings with non-invasive surrogates of MSNA to determine the appropriateness of using such surrogates in assessing the clinical status of hemorrhaging patients

    Developement of real time diagnostics and feedback algorithms for JET in view of the next step

    Full text link
    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model–based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Anomalous asymmetry of magnetoresistance in NbSe3_3 single crystals

    Full text link
    A pronounced asymmetry of magnetoresistance with respect to the magnetic field direction is observed for NbSe3_3 crystals placed in a magnetic field perpendicular to their conducting planes. It is shown that the effect persists in a wide temperature range and manifests itself starting from a certain magnetic induction value B0B_0, which at T=4.2T=4.2 K corresponds to the transition to the quantum limit, i.to the state where the Landay level splitting exceeds the temperature.Comment: 4 pages, 6 figures, to be appeared in JETP Let

    U-series and radiocarbon cross dating of speleothems from Nerja Cave (Spain): Evidence of open system behavior. Implication for the Spanish rock art chronology

    Get PDF
    Two stalagmites from Nerja cave (Andalusia, Spain) were studied. The cave is well known because of its long human occupation from the Upper Palaeolithic to the Chalcolithic and its abundant parietal prehistoric Art. The aims of this study were twofold: i) to compare uranium/thorium (Th/U) and Carbon-14 (C) ages obtained all along the growth axis of the stalagmites in order to understand the consequences of diagenetic processes on the validity of radiometric ages; ii) as one of the stalagmites contains black layers, attributed to combustion soot, to establish when these intense hearths were used and by which culture. Th/U and C ages were coupled with mineralogical studies using FTIR (Fourier-transform infrared spectroscopy) and thin section observations. The first stalagmite (GN16-9b) displays Th/U ages in stratigraphic order, and compatible with C ages corrected for a few percent of dead carbon. Homogeneous composition of aragonitic crystals characterized by their needle-like texture is observed throughout this speleothem. For the second stalagmite (GN16-7), in contrast, Th/U ages display large significant inversions and discordant results on the upper part and at the base of the stalagmite, suggesting a possible open system behavior for this chronometer. Interestingly, C ages are in stratigraphic order all along the stalagmite and are compatible with Th/U ages only in its central part. Mineralogical studies display evidence of aragonite to calcite transformation at the top and a complex mineralogical assemblage with interlayered silicates (possibly clays) and calcitic mineralogy for the base of GN16-7. In these parts, discordant Th/U ages were measured. In the middle part of the stalagmite, however, where the fibrous aragonite is well preserved, the C and Th/U ages agree. Our data suggest that in the case of aragonite to calcite transformation as shown here, Th/U ages are biased, but C ages seem to remain accurate, as already observed in aragonitic marine bio minerals. C ages obtained are used for the chronology of the soot layer, determined here between 7900 and 5500 years Cal BP, coherent with previous analysis of charcoals in the same sector of the cave. This study highlights the importance of working with at least two chronometers when stratigraphic age verification is not possible, as is the case of some parietal CaCO thin layers used for rock art dating. Recent Th/U ages published for carbonate deposits on Spanish parietal Art are discussed in light of this demonstration.This research was funded by ANR (grant number ANR-18-CE27- 0004, ApART project) and supported by the Paris Ile-de-France Region – DIM “matérieux Anciens et Patrimoniaux” for FTIR analysis. The authors thank LMC14 staff (Laboratoire de Mesure du Carbone-14), ARTEMIS national facility, for the results obtained with the Accelerator Mass Spectroscopy method, and the PANOPLY analytical platform. This research is part of the “Proyecto General de Investigación aplicada a la conservación de Cueva de Nerja” authorised by the Junta de Andalucía and financed by the Fundación de Servicios Cueva de Nerja. The authors also wish to thank the “Instituto de Investigación Cueva de Nerja” for supporting this research. M.A.Medina-Alcaide has a Postdoctoral Fyssen Grant; the results presented in this paper are included in the PID2019-107262GB-I00 and PDC2021-121501-I00 grants funded by MCIN/AEI/10.13039/501100011033

    Electron transport and energy relaxation in dilute magnetic alloys

    Full text link
    We consider the effect of the RKKY interaction between magnetic impurities on the electron relaxation rates in a normal metal. The interplay between the RKKY interaction and the Kondo effect may result in a non-monotonic temperature dependence of the electron momentum relaxation rate, which determines the Drude conductivity. The electron phase relaxation rate, which determines the magnitude of the weak localization correction to the resistivity, is also a non-monotonic function of temperature. For this function, we find the dependence of the position of its maximum on the concentration of magnetic impurities. We also relate the electron energy relaxation rate to the excitation spectrum of the system of magnetic impurities. The energy relaxation determines the distribution function for the out-of-equilibrium electrons. Measurement of the electron distribution function thus may provide information about the excitations in the spin glass phase.Comment: 15 pages, 5 figure

    State-of-the-art monitoring in treatment of dengue shock syndrome: a case series

    Get PDF
    BACKGROUND: Early recognition and treatment of circulatory volume loss is essential in the clinical management of dengue viral infection. We hypothesized that a novel computational algorithm, originally developed for noninvasive monitoring of blood loss in combat casualties, could: (1) indicate the central volume status of children with dengue during the early stages of shock ; and (2) track fluid resuscitation status. METHODS: Continuous noninvasive photoplethysmographic waveforms were collected over a 5-month period from three children of Thai ethnicity with clinical suspicion of dengue. Waveform data were processed by the algorithm to calculate each child\u27s Compensatory Reserve Index, where 1 represents supine normovolemia and 0 represents the circulatory volume at which hemodynamic decompensation occurs. Values between 1 and 0 indicate the proportion of reserve remaining before hemodynamic decompensation. RESULTS: This case report describes a 7-year-old Thai boy, another 7-year-old Thai boy, and a 9-year-old Thai boy who exhibited signs and symptoms of dengue shock syndrome; all the children had secondary dengue virus infections, documented by serology and reverse transcriptase polymerase chain reaction. The three boys experienced substantial plasma leakage demonstrated by pleural effusion index \u3e 25, ascites, and \u3e 20 % hemoconcentration. They received fluid administered intravenously; one received a blood transfusion. All three boys showed a significantly low initial Compensatory Reserve Index ( \u3e /=0.20), indicating a clinical diagnosis of near shock . Following 5 days with fluid resuscitation treatment, their Compensatory Reserve Index increased towards normovolemia (that is, Compensatory Reserve Index \u3e 0.75). CONCLUSIONS: The results from these cases demonstrate a new variation in the diagnostic capability to manage patients with dengue shock syndrome. The findings shed new light on a method that can avoid possible adverse effects of shock by noninvasive measurement of a patient\u27s compensatory reserve rather than standard vital signs or invasive diagnostic methods
    corecore