4,151 research outputs found
The effects of dust evolution on disks in the mid-IR
In this paper, we couple together the dust evolution code two-pop-py with the
thermochemical disk modelling code ProDiMo. We create a series of
thermochemical disk models that simulate the evolution of dust over time from
0.018 Myr to 10 Myr, including the radial drift, growth, and settling of dust
grains. We examine the effects of this dust evolution on the mid-infrared gas
emission, focussing on the mid-infrared spectral lines of C2H2, CO2, HCN, NH3,
OH, and H2O that are readily observable with Spitzer and the upcoming E-ELT and
JWST.
The addition of dust evolution acts to increase line fluxes by reducing the
population of small dust grains. We find that the spectral lines of all species
except C2H2 respond strongly to dust evolution, with line fluxes increasing by
more than an order of magnitude across the model series as the density of small
dust grains decreases over time. The C2H2 line fluxes are extremely low due to
a lack of abundance in the infrared line-emitting regions, despite C2H2 being
commonly detected with Spitzer, suggesting that warm chemistry in the inner
disk may need further investigation. Finally, we find that the CO2 flux
densities increase more rapidly than the other species as the dust disk
evolves. This suggests that the flux ratios of CO2 to other species may be
lower in disks with less-evolved dust populations.Comment: 13 pages, 9 figures, accepted in A&
Tuberculosis treatment in a refugee and migrant population: 20 years of experience on the Thai-Burmese border.
Although tuberculosis (TB) is a curable disease, it remains a major global health problem and an important cause of morbidity and mortality among vulnerable populations, including refugees and migrants
Inner disk clearing around the Herbig Ae star HD\,139614: Evidence for a planet-induced gap ?
Spatially resolving the inner dust cavity of the transitional disks is a key
to understanding the connection between planetary formation and disk dispersal.
The disk around the Herbig star HD 139614 is of particular interest since it
presents a pretransitional nature with an au-sized gap, in the dust, that was
spatially resolved by mid-IR interferometry. Using new NIR interferometric
observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk
further and identify viable mechanisms for the inner disk clearing. We report
the first multiwavelength radiative transfer modeling of the interferometric
data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by
Herschel/PACS photometries. We confirm a gap structure in the um-sized dust,
extending from about 2.5 au to 6 au, and constrained the properties of the
inner dust component: e.g., a radially increasing surface density profile, and
a depletion of 10^3 relative to the outer disk. Since self-shadowing and
photoevaporation appears unlikely to be responsible for the au-sized gap of
HD~139614, we thus tested if dynamical clearing could be a viable mechanism
using hydrodynamical simulations to predict the gaseous disk structure. Indeed,
a narrow au-sized gap is expected when a single giant planet interacts with the
disk. Assuming that small dust grains are well coupled to the gas, we found
that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1
Myr, reproduce most of the aspects of the dust surface density profile, while
no significant depletion in gas occurred in the inner disk, in contrast to the
dust. However, the dust-depleted inner disk could be explained by the expected
dust filtration by the gap and the efficient dust growth/fragmentation in the
inner disk regions. Our results support the hypothesis of a giant planet
opening a gap and shaping the inner region of the HD~139614 disk.Comment: Version accepted in A&A, with typos corrections in the tex
Grain size limits derived from 3.6 {\mu}m and 4.5 {\mu}m coreshine
Recently discovered scattered light from molecular cloud cores in the
wavelength range 3-5 {\mu}m (called "coreshine") seems to indicate the presence
of grains with sizes above 0.5 {\mu}m. We aim to analyze 3.6 and 4.5 {\mu}m
coreshine from molecular cloud cores to probe the largest grains in the size
distribution. We analyzed dedicated deep Cycle 9 Spitzer IRAC observations in
the 3.6 and 4.5 {\mu}m bands for a sample of 10 low-mass cores. We used a new
modeling approach based on a combination of ratios of the two background- and
foreground-subtracted surface brightnesses and observed limits of the optical
depth. The dust grains were modeled as ice-coated silicate and carbonaceous
spheres. We discuss the impact of local radiation fields with a spectral slope
differing from what is seen in the DIRBE allsky maps. For the cores L260,
ecc806, L1262, L1517A, L1512, and L1544, the model reproduces the data with
maximum grain sizes around 0.9, 0.5, 0.65, 1.5, 0.6, and > 1.5 {\mu}m,
respectively. The maximum coreshine intensities of L1506C, L1439, and L1498 in
the individual bands require smaller maximum grain sizes than derived from the
observed distribution of band ratios. Additional isotropic local radiation
fields with a spectral shape differing from the DIRBE map shape do not remove
this discrepancy. In the case of Rho Oph 9, we were unable to reliably
disentangle the coreshine emission from background variations and the strong
local PAH emission. Considering surface brightness ratios in the 3.6 and 4.5
{\mu}m bands across a molecular cloud core is an effective method of
disentangling the complex interplay of structure and opacities when used in
combination with observed limits of the optical depth.Comment: 23 pages, 18 figures, accepted for publication in A&
[OI] disk emission in the Taurus star forming region
The structure of protoplanetary disks is thought to be linked to the
temperature and chemistry of their dust and gas. Whether the disk is flat or
flaring depends on the amount of radiation that it absorbs at a given radius,
and on the efficiency with which this is converted into thermal energy. The
understanding of these heating and cooling processes is crucial to provide a
reliable disk structure for the interpretation of dust continuum emission and
gas line fluxes. Especially in the upper layers of the disk, where gas and dust
are thermally decoupled, the infrared line emission is strictly related to the
gas heating/cooling processes. We aim to study the thermal properties of the
disk in the oxygen line emission region, and to investigate the relative
importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070
Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes
observed in a sample of protoplanetary disks of the Taurus/Auriga star forming
region and compare it to the model predictions presented in our previous work.
The data were obtained with the PACS instrument on board the Herschel Space
Observatory as part of the Herschel Open Time Key Program GASPS (GAS in
Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid
of disk models can reproduce the [OI] absolute fluxes and predict a correlation
between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI]
line flux and the X-ray luminosity, the FUV luminosity or their sum. The data
show that the FUV or X-ray radiation has no notable impact on the region where
the [OI] line is formed. This is in contrast with what is predicted from our
models. Possible explanations are that the disks in Taurus are less flaring
than the hydrostatic models predict, and/or that other disk structure aspects
that were left unchanged in our models are important. ..abridged..Comment: 9 pages, accepted for publication in A&
Optimizing radial basis functions by D.C. programming and its use in direct search for global derivative-free optimization
In this paper we address the global optimization of functions subject
to bound and linear constraints without using derivatives of the objective function.
We investigate the use of derivative-free models based on radial basis functions
(RBFs) in the search step of direct-search methods of directional type. We also
study the application of algorithms based on difference of convex (d.c.) functions
programming to solve the resulting subproblems which consist of the minimization
of the RBF models subject to simple bounds on the variables. Extensive numerical
results are reported with a test set of bound and linearly constrained problems
Ices in Star-Forming Regions: First Results from VLT-ISAAC
The first results from a VLT-ISAAC program on L- and M-band infrared
spectroscopy of deeply-embedded young stellar objects are presented. The advent
of 8-m class telescopes allows high S/N spectra of low-luminosity sources to be
obtained. In our first observing run, low- and medium-resolution spectra have
been measured toward a dozen objects, mostly in the Vela and Chamaeleon
molecular clouds. The spectra show strong absorption of H2O and CO ice, as well
as weak features at `3.47' and 4.62 mu. No significant solid CH3OH feature at
3.54 mu is found, indicating that the CH3OH/H2O ice abundance is lower than
toward some massive protostars. Various evolutionary diagnostics are
investigated for a set of sources in Vela.Comment: 8 pages, 4 figures, to appear in The Origins of Stars and Planets:
the VLT View, eds. J. Alves, M. McCaughrean (Springer Verlag
Three-body decays of sleptons in models with non-universal Higgs masses
We compute the three-body decays of charged sleptons and sneutrinos into
other sleptons. These decays are of particular interest in SUSY-breaking models
with non-universal Higgs mass parameters, where the left-chiral sleptons can be
lighter than the right-chiral ones, and lighter than the lightest neutralino.
We present the formulas for the three-body decay widths together with a
numerical analysis in the context of gaugino-mediated SUSY breaking with a
gravitino LSP.Comment: Version published in JHEP. See http://cern.ch/kraml/papers/ for
high-res figure
Scattering from dust in molecular clouds: Constraining the dust grain size distribution through near-infrared cloudshine and infrared coreshine
Context. The largest grains (0.5−1 μm) in the interstellar size distribution are efficient in scattering near- and mid-infrared radiation. These wavelengths are therefore particularly well suited to probe the still uncertain high-end of the size distribution.
Aims. We investigate the change in appearance of a typical low-mass molecular core from the Ks (2.2 μm) band to the Spitzer IRAC 3.6 and 8 micron bands, and compare with model calculations, which include variations of the grain size distribution.
Methods. We combine Spitzer IRAC and ground-based near-infrared observations to characterize the scattered light observed at the near- and mid-infrared wavelengths from the core L260. Using a spherical symmetric model core, we perform radiative transfer calculations to study the impact of various dust size distributions on the intensity profiles across the core.
Results. The observed scattered light patterns in the Ks and 3.6 μm bands are found to be similar. By comparison with radiative transfer models the two profiles place constraints on the relative abundance of small and large (more than 0.25 μm) dust grains. The scattered light profiles are found to be inconsistent with an interstellar silicate grain distribution extending only to 0.25 μm and large grains are needed to reach the observed fluxes and the flux ratios. The shape of the Ks band surface brightness profile limits the largest grains to 1−1.5 μm.
Conclusions. In addition to observing coreshine in the Spitzer IRAC channels, the combination with ground-based near-infrared observations are suited to constrain the properties of large grains in cores
- …