435 research outputs found

    Molecular Electroporation and the Transduction of Oligoarginines

    Full text link
    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of 180 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40--60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.Comment: 15 pages, 5 figure

    Validation of the High Performance Conduction-Cooled Prototype LTS Pulse Coil for UPS-SMES

    Get PDF
    A conduction-cooled low temperature superconducting (LTS) pulse coil has been developed as a key technology for UPS-SMES. We have been developing a 1 MW, 1 s UPS-SMES for a protection from a momentary voltage drop and an instant power failure. A conduction-cooled LTS pulse coil has excellent characteristics, which are adequate for a short-time uninterruptible power supply (UPS). The LTS coil has better cost performance over the HTS coil at present and the conduction cooling has higher reliability and easier operation than the conventional cooling schemes such as pool boiling with liquid helium or forced flow of supercritical helium. To demonstrate the high performances of the LTS pulse coil, we have fabricated a prototype coil with stored energy of 100 kJ and have conducted cooling and excitation tests. The successful performance test results including current shut-off test with a time constant of 1.3 s and repeated excitation of a triangular waveform with high ramp rate are reporte

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes

    Get PDF
    The heterotrimeric CCAAT-binding complex is evolutionary conserved in eukaryotic organisms. The corresponding Aspergillus nidulans CCAAT- binding factor (AnCF) consists of the subunits HapB, HapC and HapE. All of the three subunits are necessary for DNA binding. Here, we demonstrate that AnCF senses the redox status of the cell via oxidative modification of thiol groups within the histone fold motif of HapC. Mutational and in vitro interaction analyses revealed that two of these cysteine residues are indispensable for stable HapC/HapE subcomplex formation and high-affinity DNA binding of AnCF. Oxidized HapC is unable to participate in AnCF assembly and localizes in the cytoplasm, but can be recycled by the thioredoxin system in vitro and in vivo. Furthermore, deletion of the hapC gene led to an impaired oxidative stress response. Therefore, the central transcription factor AnCF is regulated at the post-transcriptional level by the redox status of the cell serving for a coordinated activation and deactivation of antioxidative defense mechanisms including the specific transcriptional activator NapA, production of enzymes such as catalase, thioredoxin or peroxiredoxin, and maintenance of a distinct glutathione homeostasis. The underlying fine-tuned mechanism very likely represents a general feature of the CCAAT-binding complexes in eukaryotes

    NEWSdm Collaboration

    Get PDF
    Direct Dark Matter searches are nowadays one of the most fervid research topics with many experimental efforts devoted to the search for nuclear recoils induced by the scattering of Weakly Interactive Massive Particles (WIMPs). Detectors able to reconstruct the direction of the nucleus recoiling against the scattering WIMP are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Exploiting directionality would also prove the galactic origin of Dark Matter with an unambiguous signal-to-background separation. Indeed, the angular distribution of recoiled nuclei is centered around the direction of the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we present the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and of optical read-out systems reaching unprecedented nanometric resolution

    Vibrio cholerae Proteome-Wide Screen for Immunostimulatory Proteins Identifies Phosphatidylserine Decarboxylase as a Novel Toll-Like Receptor 4 Agonist

    Get PDF
    Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called “EPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFα and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant
    corecore