227 research outputs found

    Planning and Experiencing the Move to a Continuing Care Retirement

    Get PDF
    This article suggest that continuing care retirement communities have become more common. While expensive, they offer many amenities as well as long term car

    Determining Sequential Micellization Steps of Bile Salts With Multi-cmc Modeling

    Get PDF
    Hypothesis Bile salts exhibit complex concentration-dependent micellization in aqueous solution, rooted in a long-standing hypothesis of increasing size in bile aggregation that has historically focused on the measurement of only one CMC detected by a given method, without resolving successive stepwise aggregates. Whether bile aggregation is continuous or discrete, at what concentration does the first aggregate form, and how many aggregation steps occur, all remain as open questions. Experiments Bile salt critical micelle concentrations (CMCs) were investigated with NMR chemical shift titrations and a multi-CMC phase separation modeling approach developed herein. The proposed strategy is to establish a correspondence of the phase separation and mass action models to treat the first CMC; subsequent micellization steps, involving larger micelles, are then treated as phase separation events. Findings The NMR data and the proposed multi-CMC model reveal and resolve multiple closely spaced sequential preliminary, primary, and secondary discrete CMCs in dihydroxy and trihydroxy bile salt systems in basic (pH 12) solutions with a single model of one NMR data set. Complex NMR data are closely explained by the model. Four CMCs are established in deoxycholate below 100 mM (298 K, pH 12): 3.8 Β± 0.5 mM, 9.1 Β± 0.3 mM, 27 Β± 2 mM, and 57 Β± 4 mM, while three CMCs were observed in multiple bile systems, also under basic conditions. Global fitting leverages the sensitivity of different protons to different aggregation stages. In resolving these closely spaced CMCs, the method also obtains chemical shifts of these spectroscopically inaccessible (aka dark) states of the distinct micelles

    Ca2+ Entry via TRPC1 is Essential for Cellular Differentiation and Modulates Secretion via the SNARE Complex

    Get PDF
    Adipocyte functionality, including adipocyte differentiation and adipokine secretion, is essential in obesity-associated metabolic syndrome. Here, we provide evidence that Ca2+ influx in primary adipocytes, especially upon store-depletion, plays an important role in adipocyte differentiation, functionality, and subsequently metabolic regulation. The endogenous Ca2+ entry channel in both subcutaneous and visceral adipocytes was dependent on TRPC1-STIM1 and blocking Ca2+ entry with SKF-96365 or TRPC1-/- derived adipocytes inhibited adipocyte differentiation. Additionally, TRPC1-/- mice have decreased organ weight, but increased adipose deposition and reduced serum adiponectin and leptin concentrations, without affecting total adipokine expression. Mechanistically, TRPC1- mediated Ca2+ entry regulated SNARE complex formation and agonist –mediated secretion of adipokine loaded vesicles was inhibited in TRPC1-/- adipose. These results suggest an unequivocal role of TRPC1 in adipocytes differentiation and adiponectin secretion, and loss of TRPC1 disturbs metabolic homeostasis

    The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections

    Get PDF
    A stereotaxic brain atlas of the basal ganglia and thalamus of Macaca fascicularis presented here is designed with a surgical perspective. In this regard, all coordinates have been referenced to a line linking the anterior and posterior commissures (ac–pc line) and considering the center of the ac at the midline as the origin of the bicommissural space. The atlas comprises of 43 different plates (19 coronal levels, 10 sagittal levels and 14 horizontal levels). In addition to β€˜classical’ cyto- and chemoarchitectural techniques such as the Nissl method and the acetylcholinesterase stain, several immunohistochemical stains have been performed in adjacent sections, including the detection of tyrosine hydroxylase, enkephalin, neurofilaments, parvalbumin and calbindin. In comparison to other existing stereotaxic atlases for M. fasicularis, this atlas has two main advantages: firstly, brain cartography is based on a wide variety of cyto- and chemoarchitectural stains carried out on adjacent sections, therefore enabling accurate segmentation. Secondly and most importantly, sagittal and horizontal planes are included. Sagittal planes are very useful for calculating oblique trajectories, whereas, clinical researchers engaged in neuroimaging studies will be more familiar with horizontal sections, as they use horizontal (also called β€œaxial”) brain images in their daily routine of their clinical practices

    Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease

    Get PDF
    Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. Β© 2010 Macmillan Publishers Limited. All rights reserved

    A critical realist evaluation of a music therapy intervention in palliative care

    Get PDF
    BACKGROUND: Music therapy is increasingly used as an adjunct therapy to support symptom management in palliative care. However, studies to date have paid little attention to the processes that lead to changes in patient outcomes. To fill this gap, we examined the processes and experiences involved in the introduction of music therapy as an adjunct complementary therapy to palliative care in a hospice setting in the United Kingdom (UK). METHODS: Using a realistic evaluation approach, we conducted a qualitative study using a variety of approaches. These consisted of open text answers from patients (n = 16) on how music therapy helped meet their needs within one hospice in Northern Ireland, UK. We also conducted three focus groups with a range of palliative care practitioners (seven physicians, seven nursing staff, two social workers and three allied health professionals) to help understand their perspectives on music therapy's impact on their work setting, and what influences its successful implementation. This was supplemented with an interview with the music therapist delivering the intervention. RESULTS: Music therapy contains multiple mechanisms that can provide physical, psychological, emotional, expressive, existential and social support. There is also evidence that the hospice context, animated by a holistic approach to healthcare, is an important facilitator of the effects of music therapy. Examination of patients' responses helped identify specific benefits for different types of patients. CONCLUSIONS: There is a synergy between the therapeutic aims of music therapy and those of palliative care, which appealed to a significant proportion of participants, who perceived it as effective

    Light-Induced Responses of Slow Oscillatory Neurons of the Rat Olivary Pretectal Nucleus

    Get PDF
    Background: The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes. Methodology: To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX). Conclusions: We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillationpreserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firin

    Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation

    Get PDF
    Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. Β© 2014 Balaban et al

    Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Get PDF
    Ξ±-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic Ξ²-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center
    • …
    corecore