147 research outputs found

    Cryptic Torrent Frogs of Myanmar: An Examination of the Amolops marmoratus Species Complex with the Resurrection of Amolops afghanus and the identification of a New Species

    Get PDF
    Cataloged from PDF version of article.We investigated diversity in the Amolops marmoratus species complex within Myanmar using both molecular and morphological characters from recently collected specimens. Based on congruence between multivariate analyses of quantitative morphological characters and phylogenetic analyses of nucleotide variation in the 16S ribosomal gene conducted on 43 out of 182 frogs examined, we recognize A. marmoratus for specimens from the states of Mon and Shan and northern Tanintharyi Division and designate a neotype for this species; resurrect A. afghanus (Gnther, 1858) from synonymy with A. marmoratus for specimens from the northern state of Kachin and designate a lectotype for this species; recognize A. panhai for specimens from Tanintharyi, a new country record; and describe a new species for specimens from the western states of Chin and Rakhine, and Sagaing Division. © 2012 by the American Society of Ichthyologists and Herpetologists

    mESAdb: microRNA expression and sequence analysis database

    Get PDF
    Cataloged from PDF version of article.microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data

    Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    Get PDF
    Cataloged from PDF version of article.Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism

    School wellbeing among children in grades 1 - 10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determinants of children's school wellbeing have not been extensively studied. In this cross-sectional study of school children we assessed how factors assumed to promote wellbeing and factors assumed to adversely influence wellbeing were associated with self-reported wellbeing in school.</p> <p>Methods</p> <p>Children from five schools, 230 boys and 189 girls in grades 1-10, responded to the same set of questions. We used proportional odds logistic regression to assess the associations of promoting and restraining factors with school wellbeing.</p> <p>Results</p> <p>In a multivariable analysis, degree of school wellbeing in boys was strongly and positively related to enjoying school work (odds ratio, 3.84, 95% CI 2.38 to 6.22) and receiving necessary help (odds ratio, 3.55, 95% CI 2.17 to 5.80) from teachers. In girls, being bothered during lessons was strongly and negatively associated with school wellbeing (odds ratio, 0.43, 95% CI 0.22 to 0.85).</p> <p>Conclusions</p> <p>Different factors may determine school wellbeing in boys and girls, but for both genders, factors relevant for lessons may be more important than factors related to recess. Especially in boys, the student-teacher relationship may be of particular importance.</p

    Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration

    Get PDF
    Background and Aim: The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Methods: Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. Results: The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. Conclusion: The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration. © 2006 The Authors

    Back to the basics: hemorrhage after vaccination: a case report

    Get PDF
    A 50-day-old girl with swelling and ecchymosis of right hand dorsum after DTP vaccination on ipsilateral deltoid area was referred to the pediatric infectious disease outpatient unit with a presumed diagnosis of gangrenous cellulites. Physical examination and laboratory evaluation revealed intramuscular bleeding as a result of vitamin K deficiency. We would like to emphasize the importance of both vitamin K prophylaxis in the newborn to prevent hemorrhagic disease of the newborn and of the education of persons administering vaccines about this very basic aspect of pediatrics for early recognition

    Aging alters the molecular dynamics of synapses in a sexually dimorphic pattern in zebrafish (Danio rerio)

    Get PDF
    The zebrafish has become a popular model for studying normal brain aging due to its large fecundity, conserved genome, and available genetic tools; but little data exists about neurobiological age-related alterations. The current study tested the hypothesis of an association between brain aging and synaptic protein loss across males and females. Western blot analysis of synaptophysin (SYP), a presynaptic vesicle protein, and postsynaptic density-95 (PSD-95) and gephyrin (GEP), excitatory and inhibitory postsynaptic receptor-clustering proteins, respectively, was performed in young, middle-aged, and old male and female zebrafish (Danio rerio) brains. Univariate and multivariate analyses demonstrated that PSD-95 significantly increased in aged females and SYP significantly decreased in males, but GEP was stable. Thus, these key synaptic proteins vary across age in a sexually dimorphic manner, which has been observed in other species, and these consequences may represent selective vulnerabilities for aged males and females. These data expand our knowledge of normal aging in zebrafish, as well as further establish this model as an appropriate one for examining human brain aging. © 2017 Elsevier Inc

    Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of <it>SLIT-ROBO </it>genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC) is missing. Hence, we quantified <it>SLIT-ROBO </it>transcripts in HCC cell lines, and in normal and tumor tissues from liver.</p> <p>Methods</p> <p>Expression of <it>SLIT-ROBO </it>family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test.</p> <p>Results</p> <p>Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: <it>ROBO1</it>, <it>ROBO2</it>, <it>SLIT1 </it>in one cluster, and <it>ROBO4</it>, <it>SLIT2</it>, <it>SLIT3 </it>in the other, respectively. Moreover, <it>SLIT-ROBO </it>expression predicted <it>AFP</it>-dependent subgrouping of HCC cell lines, but not that of liver tissues. <it>ROBO1 </it>and <it>ROBO2 </it>were significantly up-regulated, whereas <it>SLIT3 </it>was significantly down-regulated in cell lines with high-<it>AFP </it>background. When compared to normal liver tissue, <it>ROBO1 </it>was found to be significantly overexpressed, while <it>ROBO4 </it>was down-regulated in HCC. We also observed that <it>ROBO1 </it>and <it>SLIT2 </it>differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, <it>ROBO4 </it>could discriminate poorly differentiated HCC from other subgroups.</p> <p>Conclusion</p> <p>The present study is the first in comprehensive and quantitative evaluation of <it>SLIT-ROBO </it>family gene expression in HCC, and suggests that the expression of <it>SLIT-ROBO </it>genes is regulated in hepatocarcinogenesis. Our results implicate that <it>SLIT-ROBO </it>transcription profile is bi-modular in nature, and that each module shows intrinsic variability. We also provide quantitative evidence for potential use of <it>ROBO1</it>, <it>ROBO4 </it>and <it>SLIT2 </it>for prediction of tumor stage and differentiation status.</p

    Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet

    Get PDF
    In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.Funding for open access charge: Universidad de Malaga/CBUA. The present study has been supported by grants from Instituto de Salud Carlos III (ISCIII) (contract numbers: PID2022–140169OB-C21; PI21/01248; PI19/00883) and from Consejería de Salud de Andalucía (contract number: PEMP-0127–2020, Spain), cofounded by the European Union. This research was funded by HORIZON-HLTH-2022-STAYHLTH-02, grant number 101095679. Funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. MK was partially supported by Grant UID/BIM/0009/2020 of the Portuguese Fundação para a Ciência e a Tecnologia (FCT). MVP and IAA hold Sara Borrell research contracts from ISCIII (CD21/00198 and CD20/00083, respectively). This research was supported by CIBERehd – Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea – European Regional Development Fund. JIG and GPA are supported by NIHR Nottingham Biomedical Research Centre [NIHR203310]. The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health. This publication is based upon work from COST Action “CA17112—Prospective European Drug-Induced Liver Injury Network” supported by COST (European Cooperation in Science and Technology); www.cost.eu
    corecore