524 research outputs found

    Aspergillus fumigatus preexposure worsens pathology and improves control of Mycobacterium abscessus pulmonary infection in mice

    Get PDF
    ABSTRACT Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Mutations in this chloride channel lead to mucus accumulation, subsequent recurrent pulmonary infections, and inflammation, which, in turn, cause chronic lung disease and respiratory failure. Recently, rates of nontuberculous mycobacterial (NTM) infections in CF patients have been increasing. Of particular relevance is infection with Mycobacterium abscessus , which causes a serious, life-threatening disease and constitutes one of the most antibiotic-resistant NTM species. Interestingly, an increased prevalence of NTM infections is associated with worsening lung function in CF patients who are also coinfected with Aspergillus fumigatus . We established a new mouse model to investigate the relationship between A. fumigatus and M. abscessus pulmonary infections. In this model, animals exposed to A. fumigatus and coinfected with M. abscessus exhibited increased lung inflammation and decreased mycobacterial burden compared with those of mice infected with M. abscessus alone. This increased control of M. abscessus infection in coinfected mice was mucus independent but dependent on both transcription factors T-box 21 (Tbx21) and retinoic acid receptor (RAR)-related orphan receptor gamma t (RORγ-t), master regulators of type 1 and type 17 immune responses, respectively. These results implicate a role for both type 1 and type 17 responses in M. abscessus control in A. fumigatus -coinfected lungs. Our results demonstrate that A. fumigatus , an organism found commonly in CF patients with NTM infection, can worsen pulmonary inflammation and impact M. abscessus control in a mouse model. </jats:p

    Candida albicans colonization and dissemination from the murine gastrointestinal tract : the influence of morphology and Th17 immunity

    Get PDF
    This article is protected by copyright. All rights reserved. This work was supported by the Wellcome Trust (086558, 080088, 102705), a Wellcome Trust Strategic Award (097377) and a studentship from the University of Aberdeen. D.K. was supported by grant 5R01AI083344 from the National Institute of Allergy and Infectious Diseases and by a Voelcker Young Investigator Award from the Max and Minnie Tomerlin Voelcker Fund.Peer reviewedPublisher PD

    Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection

    Get PDF
    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the world's population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered "hypervirulent" as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1β through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains. © 2014 Gopal et al

    Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy

    Get PDF
    The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4[superscript +] T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4[superscript +] T-cell responses. In addition, activating endogenous host CD103[superscript +] DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4[superscript +] T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy.National Institutes of Health (U.S.) (grant HL105427)National Institutes of Health (U.S.) (grant AI127172)United States. Army Research Office. Institute for Soldier Nanotechnologies (contract W911NF-13-D-0001)Howard Hughes Medical Institute (Investigator

    Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation

    Get PDF
    Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R signaling deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 development, and regulated the susceptibility to autoimmune inflammation

    Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Get PDF
    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB

    Microbial Ligand Costimulation Drives Neutrophilic Steroid-Refractory Asthma

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Asthma is a heterogeneous disease whose etiology is poorly understood but is likely to involve innate responses to inhaled microbial components that are found in allergens. The influence of these components on pulmonary inflammation has been largely studied in the context of individual agonists, despite knowledge that they can have synergistic effects when used in combination. Here we have explored the effects of LPS and β-glucan, two commonly-encountered microbial agonists, on the pathogenesis of allergic and non-allergic respiratory responses to house dust mite allergen. Notably, sensitization with these micro-bial components in combination acted synergistically to promote robust neutrophilic inflammation, which involved both Dectin-1 and TLR-4. This pulmonary neutrophilic inflammation was corticosteroid-refractory, resembling that found in patients with severe asthma. Thus our results provide key new insights into how microbial components influence the development of respiratory pathology

    Vitamin D supplementation decreases Aspergillus fumigatus specific Th2 responses in CF patients with aspergillus sensitization: A phase one open-label study

    Get PDF
    Background: Patients with cystic fibrosis (CF) complicated by allergic bronchopulmonary aspergillosis (ABPA) are vitamin D deficient and in vitro treatment with 1,25 (OH) vitamin D of CD4+ cells from CF patients with ABPA decreases Aspergillus fumigatus(Af)-induced Th2 responses. This Phase I clinical trial investigated the safety and effectiveness of daily vitamin D supplementation in CF patients with ABPA to reduce allergic responses and ABPA symptoms, and increase serum vitamin D levels. Methods: Seven patients ages 12 years and older with a clinical diagnosis of CF and ABPA with current evidence of Af sensitization received 4000 IU vitamin D (cholecalciferol) daily for 24 weeks. The primary outcome of the study was safety followed by the Aspergillus induced IL-13 response in CD4+ T cells to test the hypothesis that vitamin D supplementation is safe and reduces Aspergillus induced IL-13 responses in CD4+ T cells. Secondary outcomes included total IgE, Aspergillus- specific IgE, vitamin D levels, FEV , urinary calcium/creatinine ratio, and cytokine production by Aspergillus-stimulated peripheral blood T cells. Results: Six months of vitamin D supplementation resulted in significant increases in serum 25-(OH) vitamin D level, and the treatment was well tolerated without evidence of vitamin D toxicity or hypercalcemia. There were no serious adverse events. Daily vitamin D supplementation led to significantly decreased Aspergillus induced IL-13 responses between the baseline visit and that at 24 weeks (p = 0.04). Aspergillus-specific IgE level was also significantly decreased after 8 (p = 0.035) and 24 weeks of daily vitamin D supplementation (p = 0.04). Conclusions: 4000 IU vitamin D daily over a 24-week period is well tolerated in CF patients with a history ABPA and current evidence of Th2 immunity to Af. Daily vitamin D supplementation was associated with reduced Aspergillus induced IL-13 responses from peripheral. CD4+ T cells and Aspergillus-specific IgE levels, as well as increased serum vitamin D levels. This treatment was well tolerated and the study supports further investigation of the use of vitamin D supplementation in Th2 mediated diseases. 2 3 3 3 1 3

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    corecore