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Aspergillus fumigatus Preexposure Worsens Pathology and
Improves Control of Mycobacterium abscessus Pulmonary
Infection in Mice

Leticia Monin,a,b Shail Mehta,c Waleed Elsegeiny,b Radha Gopal,b Jeremy P. McAleer,b Tim D. Oury,d Jay Kolls,b

Shabaana A. Khadera

aDepartment of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
bRichard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC,
Pittsburgh, Pennsylvania, USA

cDivision of Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St.
Louis, Missouri, USA

dDepartment of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

ABSTRACT Cystic fibrosis (CF) is an autosomal recessive disease caused by muta-
tions in the CF transmembrane conductance regulator (CFTR) gene. Mutations in this
chloride channel lead to mucus accumulation, subsequent recurrent pulmonary in-
fections, and inflammation, which, in turn, cause chronic lung disease and respira-
tory failure. Recently, rates of nontuberculous mycobacterial (NTM) infections in CF
patients have been increasing. Of particular relevance is infection with Mycobacte-
rium abscessus, which causes a serious, life-threatening disease and constitutes one
of the most antibiotic-resistant NTM species. Interestingly, an increased prevalence
of NTM infections is associated with worsening lung function in CF patients who are
also coinfected with Aspergillus fumigatus. We established a new mouse model to in-
vestigate the relationship between A. fumigatus and M. abscessus pulmonary infec-
tions. In this model, animals exposed to A. fumigatus and coinfected with M. absces-
sus exhibited increased lung inflammation and decreased mycobacterial burden
compared with those of mice infected with M. abscessus alone. This increased con-
trol of M. abscessus infection in coinfected mice was mucus independent but depen-
dent on both transcription factors T-box 21 (Tbx21) and retinoic acid receptor (RAR)-
related orphan receptor gamma t (ROR�-t), master regulators of type 1 and type 17
immune responses, respectively. These results implicate a role for both type 1 and
type 17 responses in M. abscessus control in A. fumigatus-coinfected lungs. Our re-
sults demonstrate that A. fumigatus, an organism found commonly in CF patients
with NTM infection, can worsen pulmonary inflammation and impact M. abscessus
control in a mouse model.

KEYWORDS Aspergillus, cystic fibrosis, cytokines, nontuberculous mycobacterium,
pulmonary immunity

The genus Mycobacterium encompasses numerous organisms, some of which are
emerging opportunistic pathogens. In particular, nontuberculous mycobacteria

(NTM) are a diverse group of environmentally ubiquitous organisms which cause a wide
spectrum of disease in humans. NTM most commonly cause disease in people with
structural lung abnormalities, including cystic fibrosis (CF) patients and patients with
primary ciliary dyskinesia, with average prevalence rates of 20% and 10%, respectively
(1). Rates of NTM infection in CF patients are reported to be increasing (2). In addition,
older female patients without underlying lung disease appear to be at higher risk of
NTM infection, in particular those with a tall and thin body habitus, scoliosis, pectus
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excavatum, and mitral valve prolapse (3). The prevalence of chronic lung disease due
to NTM is increasing and, in many areas of the United States, exceeds that of Myco-
bacterium tuberculosis.

The most common NTM causing pulmonary infection is the Mycobacterium avium
complex, but other species, including Mycobacterium abscessus, are becoming more
common in CF patients. M. abscessus infection accounts for up to 50% of NTM
infections in some CF cohorts and is associated with decrease in lung function in CF
patients (2). In addition, it constitutes one of the most clinically virulent and antibiotic-
resistant NTM species (4). Treatment can be rendered difficult by the discordance that
often occurs between in vitro antibiotic susceptibility tests and clinical effectiveness (1).
Treatment options are limited, with a treatment failure rate reported at �50% for
antibiotic treatment and lung resection sometimes being the only alternative (5).

Mucus accumulation and inhibition of lung antimicrobial peptides due to high ion
concentration are thought to underlie the increased predisposition of CF patients to
infection. Numerous pathogens can persist in the lungs of CF patients and contribute
to the decline in respiratory function (6). Coinfections with NTM and other characteristic
CF pathogens are common; Pseudomonas-derived genes have been identified in the
genome of M. abscessus (7). Furthermore, studies show that Pseudomonas aeruginosa
and M. abscessus frequently coexist in the lung environment (8). Similarly, Aspergillus
fumigatus can colonize the lungs in CF patients and cause allergic bronchopulmonary
aspergillosis (6), and its presence is associated with increased risk of NTM infection (2).
It is not clear whether this association occurs because these CF patients have more
severe lung disease or because of specific interactions between these pathogens.

In this context, common CF coinfections may alter the course of NTM disease, and
the nature and mechanisms behind such relationships have not been studied in depth.
A. fumigatus has been shown to induce type 17 cytokines (including the signature
cytokine interleukin-17 [IL-17]) and neutrophilia (9), which has been associated with
inflammation and impaired immune resistance in a mouse model (10). Type 17 re-
sponses are beneficial for A. fumigatus persistence, given that they inhibit the type 1
responses required to control infection and promote biofilm formation (9, 11). Given
the importance of type 1 immunity in mycobacterial control, a preexisting A. fumigatus
infection could affect mycobacterial containment and impact disease pathology. In
addition, neutrophils have been shown to promote M. abscessus biofilm formation,
thereby promoting bacterial persistence (12). A. fumigatus has also evolved other
strategies to evade the immune response, among which is Toll-like receptor 2-dependent
stimulation of IL-10 secretion (13). Previous work has demonstrated that peripheral
blood mononuclear cells (PBMC) from CF patients, in comparison to PBMC from healthy
controls, secreted increased IL-10 levels when exposed to A. fumigatus antigens (13).
Upon blockade of IL-10, type 1 responses were enhanced, suggesting that IL-10 may
play a role in inhibiting A. fumigatus T cell responses in CF (14). This raises the question
of whether such inhibition of the immune response by A. fumigatus may affect
concomitant immunity to NTM infections and their associated pathology.

In this work, we used a mouse model to study the effect of prior infection with A.
fumigatus infection on challenge with M. abscessus. In this model, animals exposed to
A. fumigatus and coinfected with M. abscessus exhibited increased lung inflammation
and decreased mycobacterial burden compared to those of mice infected with M.
abscessus alone. The increased control of M. abscessus infection was mucus indepen-
dent but dependent on the presence of both transcription factors T-box 21 (Tbx21) and
retinoic acid receptor (RAR)-related orphan receptor gamma (ROR�-t). As these tran-
scription factors are the master regulators of type 1 and type 17 immune responses,
respectively, this suggests a role for type 1 and type 17 responses in M. abscessus
control in coinfected hosts. Together, our data provide novel insights into how A.
fumigatus, an organism frequently found in CF patients, affects the pathology and
control of the opportunistic NTM pathogen M. abscessus.
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RESULTS
Prior A. fumigatus infection worsened lung pathology and improved M. ab-

scessus control in an acute model of coinfection. A. fumigatus commonly colonizes
the lungs in CF patients (6) and is associated with an increased frequency of NTM
infection (2). The contribution of A. fumigatus infection to M. abscessus disease, how-
ever, has not been studied. We therefore addressed the effect of A. fumigatus coinfec-
tion on M. abscessus control and associated lung pathology using a mouse model. We
hypothesized that the A. fumigatus-induced immune response may alter M. abscessus-
driven pathology and control. Given that the IL-17 response is critical in promoting A.
fumigatus-driven inflammation and host susceptibility (10), we initially determined the
kinetics of IL-17 induction in the lungs of A. fumigatus-infected mice. When C57BL/6
(B6) mice were infected with A. fumigatus, lung IL-17-producing lymphocytes accumu-
lated by day 4; the majority of the IL-17-producing cells were found to be CD4� T cells
and �� T cells (Fig. 1A to C). The accumulation of IL-17-producing cells in the infected
lung also coincided with induction of Il17 mRNA between day 1 and 4 postinfection
(Fig. 1D). These data suggest that Il17 is induced by day 4 after A. fumigatus infection.

Therefore, in subsequent experiments, mice were infected with A. fumigatus, fol-
lowed by initial challenge with M. abscessus 3 days later, to coincide with the peak of
the A. fumigatus-induced IL-17 response. Following M. abscessus infection, at 14 days,
coinfected mice exhibited improved M. abscessus control (Fig. 2A). Similar to mice
infected with A. fumigatus only, mice coinfected with A. fumigatus and M. abscessus
cleared A. fumigatus infection, as evidenced by failure to amplify A. fumigatus 18S rRNA,
an absence of Gomori methenamine silver staining, and failure to culture A. fumigatus
from lung homogenates (data not shown). Interestingly, coinfected mice displayed
increased lung inflammation and pathology, as evidenced by significantly more inflam-
matory foci than in mice infected with A. fumigatus and M. abscessus alone, respectively

FIG 1 A. fumigatus infection results in early IL-17 responses in the lung. C57BL/6 (B6) mice were challenged with
1 � 107 A. fumigatus conidia, and flow cytometry and PCR of lungs were performed at time points ranging from
1 to 34 days. (A to C) The total numbers of lung IL-17� cells (A), CD4� IL-17-producing cells (B), and lung TCR ���

IL-17� cells (C) were determined by flow cytometry. (D) The expression of Il-17 mRNA was determined by real-time
PCR (RT-PCR) of lung tissue; hypoxanthine guanine phosphoribosyl transferase gene (Hprt) expression was used as
a control. n � 6.
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FIG 2 A. fumigatus coinfection worsens lung pathology and enhances M. abscessus control in acute infection. A. fumigatus-infected
(Mabs � Af) B6 mice were challenged with 2 � 104 CFU of M. abscessus after 3 days and control (Mabs) mice with 2 � 104 CFU of
M. abscessus alone. A group of mice received only A. fumigatus-infection (Af). Naive uninfected B6 mice were also included (�). (A)
Lung bacterial burden was assessed 14 days postinfection (dpi) by plating. (B) Pulmonary inflammation was assessed on 14-dpi
formalin-fixed paraffin-embedded (FFPE) lung sections stained with H&E. Magnification, �100. (C) Inflammatory foci were counted
on H&E-stained lung sections. (D) PAS stain of FFPE lung sections to assess mucus and glycogen was performed and assessed at a
magnification of �200. (E to G) The numbers of neutrophils (CD11b� GR1�) (E), alveolar macrophages (CD11c�; high autofluores-
cence) (F), and MHC class II-positive alveolar macrophages (MHC-II� CD11c�; high autofluorescence) (G) were determined in lungs
of coinfected mice 14 dpi using flow cytometry. n � 5 for all groups. *, P � 0.05; **, P � 0.01; ****, P � 0.0001.
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(Fig. 2B and C). These foci were composed predominantly of eosinophils and histiocytes
and were associated with increased mucus accumulation as evidenced by periodic
acid-Schiff (PAS) staining (Fig. 2D). Flow cytometry showed the presence of significantly
more neutrophils, alveolar macrophages, and major histocompatibility complex (MHC)
class II-activated alveolar macrophages in the coinfected mice compared to responses
in the lungs of mice infected with M. abscessus alone (Fig. 2E to G). The accumulation
of lung neutrophils and alveolar macrophages in mice infected with A. fumigatus alone
was not significantly different from that in coinfected mice, suggesting that the
increased accumulation of inflammatory myeloid cells was likely driven by A. fumigatus
infection.

A. fumigatus-induced M. abscessus control in coinfected mice is Stat6 indepen-
dent. As A. fumigatus infection caused mucus accumulation in airways, we next studied
whether increased mucus may impair M. abscessus attachment to lung epithelial cells,
thus decreasing bacterial burden in coinfected mice. We challenged A. fumigatus-
infected mice with M. abscessus and assessed lung bacterial burden 1 h following
infection. However, M. abscessus burden did not significantly differ between control
and A. fumigatus-infected mice, suggesting that the effects of A. fumigatus on M.
abscessus control occur at a later point during infection (Fig. 3A). We further tested the
importance of mucus production on A. fumigatus-induced M. abscessus control by
infecting Stat6�/� mice, which are unable to produce mucus in response to antigen
challenge (15). Coinfected Stat6�/� mice were able to control M. abscessus to an extent
similar to that for C57BL/6 mice (Fig. 3B), indicating that mucus production does not
directly impact M. abscessus control.

A. fumigatus enhances control of M. abscessus through a Tbx21 and Rorc-
dependent mechanism. As A. fumigatus infection induced lung IL-17-producing cells

FIG 3 A. fumigatus enhances M. abscessus control via a mucus-independent mechanism. A. fumigatus-
infected (Mabs � Af) B6 mice were challenged with 2 � 104 CFU of M. abscessus after 3 days, and control
(Mabs) mice were infected with 2 � 104 CFU of M. abscessus alone. (A) Lung bacterial burden was
assessed 1 h following M. abscessus challenge by plating. A. fumigatus-infected B6 and Stat6�/� mice
were challenged with 2 � 104 CFU of M. abscessus after 3 days, and control B6 mice and Stat6�/� mice
were infected with 2 � 104 CFU of M. abscessus alone. (B) Lung bacterial burden was assessed 14 dpi by
plating. n � 3 to 5 for all groups. *, P � 0.05; ***, P � 0.001. NS, not significant.
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following infection (Fig. 1), we then studied the accumulation of IL-17- and gamma
interferon (IFN-�)-producing cells upon coinfection with M. abscessus. We found that
coinfected mice showed enhanced accumulation of IL-17-producing and IL-17/IFN-�-
coproducing CD4� CD44� T cells (Fig. 4A and B). Similarly, coinfected mice had
increased numbers of IL-17-producing �� T cells (Fig. 4C). There was a trend toward
increased IL-17/IFN-�-coproducing �� T cells, but this was not statistically increased in
coinfected mice compared with the singly infected mice (Fig. 4D). CD4� CD44� T cells
producing IFN-� alone mirrored more closely the responses observed in M. abscessus-

FIG 4 T cells producing IL-17 and IFN-� accumulate in the lungs of coinfected B6 mice. A. fumigatus-infected
(Mabs � Af) B6 mice were challenged with 2 � 104 CFU of M. abscessus after 3 days, and control (Mabs) mice
were infected with 2 � 104 CFU of M. abscessus alone. A group of mice received only A. fumigatus infection
(Af). (A to D) The numbers of IL-17-producing and IL-17/IFN-�-coproducing CD4� CD44� and CD3� TCR���

T cells were determined in the lungs of infected mice at 14 dpi by flow cytometry. (E) The numbers of CD4�

CD44� T cells producing IFN-� were determined in the lungs of mice 14 dpi by flow cytometry. (F) The
numbers of IL-17-producing, M. abscessus-specific T cells were determined in the lungs of infected mice 14 dpi
using an antigen-driven ELISpot assay. n � 3 to 5 for all groups. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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infected mice (Fig. 4E). Furthermore, while coinfected mice harbored higher numbers
of M. abscessus-specific IL-17-producing cells in their lungs, there was no significant
increase in accumulation of M. abscessus-specific IFN-�-producing cells (Fig. 4F and data
not shown). Thus, our data show that T cells producing IL-17 and IFN-� accumulate in
the lungs of coinfected mice. We then further determined the immune mechanisms
responsible for improved M. abscessus control in coinfected mice. First, we infected
Il-17ra�/� mice with M. abscessus alone or coinfected mice with A. fumigatus and M.
abscessus. While the lung bacterial burden in Il-17ra�/� mice infected with M. abscessus
alone did not differ from that in M. abscessus-infected B6 mice, we found that Il-17ra�/�

coinfected mice had a higher lung bacterial burden than coinfected B6 mice (Fig. 5A).
This indicates that IL-17RA signaling is partially involved in A. fumigatus-induced M.
abscessus control. Because interferon signaling has been established to be important
for anti-NTM responses and control (16), we next determined the effect of STAT1
deficiency on A. fumigatus-induced M. abscessus control. Stat1�/� mice demonstrated
increased bacterial burden upon M. abscessus single infection, and decreased control of
M. abscessus in coinfected mice, compared to that of B6 mice (Fig. 4A). These results
indicate that interferon signaling via the STAT1 pathway is required for the protection
observed in coinfected mice. As multiple mechanisms may simultaneously contribute
to M. abscessus control in coinfected mice, we next coinfected Tbx21�/�, Rorc�/�, or
Tbx21�/� Rorc�/� mice, which lack type 1, type 17, or both type 1 and type 17
responses, respectively. We found that individually, each transcription factor was
dispensable for A. fumigatus-induced M. abscessus protection at 14 days (Fig. 5B).
However, coinfected mice lacking both transcription factors failed to improve protec-
tion against M. abscessus challenge (Fig. 5B). On histologic analysis, Rorc�/� mice and
Tbx21�/� Rorc�/� mice exhibited higher numbers of inflammatory foci than did B6
coinfected mice and Tbx21�/� coinfected mice (Fig. 5C), as well increased lung pathol-
ogy (Fig. 5D and E). Together, these results suggest a role for both type 1 and type 17
responses in control of M. abscessus in A. fumigatus-coinfected mice.

Prior A. fumigatus infection worsened lung pathology and improved M. ab-
scessus control in a chronic model of coinfection. Our data show that A. fumigatus

infection worsens lung pathology upon subsequent M. abscessus infection in an acute
(14 day) model of coinfection. Thus, we extended the duration of infection to determine
whether similar findings could be obtained in a chronic coinfection model which would
better mimic infection in CF patients.

When B6 mice were coinfected with A. fumigatus and M. abscessus, at 30 days no
bacterial burden could be detected (data not shown). To create a chronic model of
infection, B6 mice were initially infected with A. fumigatus and then over the next 30
days were serially infected 4 times with M. abscessus. A control group of B6 mice were
also serially infected 4 times with M. abscessus alone over the 30 days. Similar to the
results of the 14-day experiment described above, chronically coinfected mice exhib-
ited improved clearance of M. abscessus (Fig. 6A), as well as increased inflammation (Fig.
6B to D) as exhibited by increased numbers of inflammatory foci. These results thus
demonstrate that prior A. fumigatus infection can worsen lung pathology even in a
chronic model of M. abscessus coinfection.

Fungal antigens improve in vitro killing of M. abscessus. A potential mechanism

leading to improved control of M. abscessus and increased pathology in A. fumigatus-
infected mice could be through activation of macrophages to induce M. abscessus
killing. To further investigate this, bone marrow-derived macrophages (BMDMs) were
generated and treated with fungal products, including zymosan and curdlan, following
which they were infected with M. abscessus. Interestingly, similar to the case for
IFN-�-treated macrophages, both zymosan and curdlan treatment improved M. absces-
sus control in macrophages (Fig. 7A), and this was associated with increased activation
of macrophages, as measured by inducible nitric oxide synthase (iNOS) accumulation in
supernatants (Fig. 7B). These studies indicate that fungal antigens may potentiate
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FIG 5 A. fumigatus-induced M. abscessus control is IL-17RA/STAT1 signaling and Tbx21/Rorc dependent. A. fumigatus-infected (Mabs �
Af) B6, Il17ra�/�, and Stat1�/� mice were challenged with 2 � 104 CFU of M. abscessus after 3 days. B6, Il17ra�/�, and Stat1�/� mice were
treated with 2 � 104 CFU of M. abscessus (Mabs) alone. (A) Lung bacterial burden was assessed 14 dpi by plating. A. fumigatus-infected
B6, Tbx21�/�, Rorc�/�, and Tbx21�/� Rorc�/� mice were challenged with 2 � 104 CFU of M. abscessus after 3 days and B6 mice with 2 �
104 CFU of M. abscessus alone. (B) Lung bacterial burden was determined 14 dpi. (C) Inflammatory foci were counted in H&E-stained lung
sections. (D and E) Pulmonary inflammation was assessed on 14-dpi FFPE lung sections stained with H&E. Magnification, �100.
Representative lung pathology is shown from B6 control mice and A. fumigatus-coinfected B6 mice (D) and A. fumigatus-coinfected
Tbx21�/� mice, Rorc�/� mice, and Tbx21�/� Rorc�/� mice (E). n � 3 to 5 for all groups. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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macrophage activation, which could, in turn, improve M. abscessus control in coinfected
mice while also worsening lung pathology.

DISCUSSION

One of the hallmarks of CF is the presence of recurrent pulmonary exacerbations
due to infections, which are associated with a decline in lung function (17, 18). CF
patients often harbor a variety of pathogens in their lungs, and how such infections
interact with each other to affect lung function is still unknown. Several recent studies
showed that A. fumigatus colonization is frequently associated with M. abscessus
infection (2, 19, 20). This association may be due to more advanced disease that
predisposes patients to M. abscessus infection, but also to host-pathogen interactions.
M. abscessus-infected CF patients are more likely to have previously received intrave-
nous (i.v.) antibiotics for other infections and to have A. fumigatus isolated from their
sputa (19). Thus, frequent antibiotic treatment for bacterial infections could lead to the

FIG 6 A. fumigatus-associated lung pathology and improved M. abscessus control in coinfected mice persists in
chronic infection. A. fumigatus-infected (Mabs � Af) B6 mice were challenged with 2 � 104 CFU of M. abscessus
after 3 days and control (Mabs) mice with 2 � 104 CFU of M. abscessus alone. Both groups then received 3
additional weekly infections with 2 � 104 CFU of M. abscessus. (A) Lung bacterial burden was assessed at 30 dpi
by plating. (B) Pulmonary inflammation was assessed at 30 dpi in FFPE lung sections stained with H&E. Magnifi-
cation, �100. (C) Inflammatory foci were scored on H&E-stained lung sections. n � 4 to 5 for all groups. **, P �
0.01.
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generation of an ecologic niche that enables survival of both A. fumigatus and M.
abscessus in CF patients. However, one infection also may directly affect the other
through host-intrinsic mechanisms, such as modulation of immune responses.

Using a mouse model of coinfection between A. fumigatus and M. abscessus, we
sought to determine the effect of A. fumigatus on lung pathology and protection in M.
abscessus infection. Upon infection with M. abscessus, previous A. fumigatus infection
worsened lung pathology and improved immune control of M. abscessus. Using several
gene-deficient mouse strains, we showed that the improved control was partly IL-17RA
and STAT1 signaling dependent. In addition, when both T-bet and ROR�-t, the master
transcription factors for the type 1 and type 17 responses, respectively, were absent, A.
fumigatus-induced protection was lost. These data suggest that the type 1 and type 17
pathways, or innate immune cells expressing T-bet and ROR�-t, can act together to
control M. abscessus infection in coinfected mice. This is in accordance with previous
findings in M. tuberculosis infection, where IL-23 was shown to compensate for IL-12p70
deficiency and to stimulate the induction of M. tuberculosis-specific type 1 and type 17
cells (21). In addition, innate immune cell activation may contribute to enhanced M.
abscessus control in coinfected mice, as in vitro stimulation of macrophages with the
fungal �-glucan products zymosan and curdlan promoted enhanced macrophage
activation and M. abscessus killing. �-Glucans can signal through a variety of immune
receptors, including complement receptor 3 (CR3), Toll-like receptors 2 and 6, and
dectin 1, which is thought to be the main �-glucan receptor on leukocytes (22).
Previous studies have found that macrophages can become activated in response to
�-glucans, increasing tumor necrosis factor alpha and inducible nitric oxide synthase
(iNOS) expression in a myeloid differentiation primary response gene 88 (MyD88)- and
nuclear factor kappa B (NF-�B)-dependent manner (23–25). Thus, both innate and
adaptive immunity may contribute to M. abscessus containment in coinfected mice.

Our mouse model provides novel insights into human findings showing that
coinfection of NTM and A. fumigatus is associated with lung function decline in CF (2).
We observed enhanced immune control of M. abscessus in mice coinfected with A.
fumigatus; however this came at the expense of increased lung pathology. In patients
with cystic fibrosis, mucus accumulation and ineffectiveness of lung antimicrobial
peptides prevent infections from being readily cleared (6). Thus, A. fumigatus and M.
abscessus coinfection in a CF patient who is unable to easily clear infection could lead
to a cycle of inflammation and lung damage, contributing to a decline in pulmonary
function observed in studies (2). Even with antimicrobial treatment and eventual
clearance of NTM, it is conceivable that CF patients coinfected with A. fumigatus and M.
abscessus could experience a decline in lung function due to prolonged lung damage
during a year-long treatment course. PBMC from CF patients secreted increased
amounts of IL-10 compared to healthy controls when exposed to recombinant A.
fumigatus antigens (14). Blockade of IL-10 resulted in enhanced type 1 responses,

FIG 7 Fungal antigens improve in vitro killing of M. abscessus. IFN-�-, zymosan-, and curdlan-treated or control
BMDMs were infected with M. abscessus (MOI, 1) for 48 h. IFN-� was utilized as a positive control. The number of
viable bacteria within BMDMs was determined by plating (A) and nitrite levels in the supernatants were determined
using Griess assays (B). *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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suggesting a role for IL-10 in inhibiting A. fumigatus T cell responses in CF (14). This
could represent an adaptive mechanism in CF patients in response to a prolonged cycle
of lung inflammation and damage due to chronic infection with A. fumigatus and other
organisms. In the current study, we have established an acute and chronic model of A.
fumigatus and M. abscessus coinfection in wild-type B6 mice. Although coinfection in B6
mice does not recapitulate all the features of human chronic lung inflammation seen
in CF patients, the in vivo model described here provides a new platform to understand
the host immune parameters for pathogens such as A. fumigatus and M. abscessus,
which often coexist in CF patients (2). Future studies could refine the establishment of
a chronic coinfection model which will enable the delineation of the immune factors
that limit pathogenesis and/or drive chronic coinfection seen in human CF patients.

In summary, our results demonstrate that A. fumigatus, a CF-prevalent fungal
organism, can worsen pulmonary pathology and inflammation and improve M. absces-
sus control early during M. abscessus infection. This improved control was partly IL-17RA
and STAT1 signaling dependent and was dependent on both T-bet and ROR�-t. These
findings also provide novel insight into the immune mechanisms regulating clearance
of M. abscessus in a mouse model. The long-term effects of A. fumigatus coinfection on
M. abscessus control and pathology, as well as the clinical significance of these findings,
may be elucidated in future studies. Future work should include studying the effects of
A. fumigatus and M. abscessus coinfection in an immunocompromised or CF animal
model, which would allow for impaired clearance of pathogens and chronic prolonged
infection. It would be important to determine whether prolonged coinfection would
result in deterioration in lung function, as has been observed in some human cohorts.
Previous work has demonstrated that chronic A. fumigatus infection is a risk factor for
pulmonary exacerbations in CF patients (26). Currently, the indications for treatment of
A. fumigatus colonization in CF patients are unclear and based on limited data. Thus, it
would be useful to determine whether treatment of A. fumigatus may impact the
course of M. abscessus infection and prevent deterioration of lung function. Finally, the
precise downstream effects of the master transcription factors T-bet and ROR�-t, which
regulate M. abscessus clearance in our model, should be further clarified.

MATERIALS AND METHODS
Animals. C57BL/6 (B6) animals were purchased from Taconic. Ifn��/� (27) mice on the B6 back-

ground were purchased from The Jackson Laboratory (Bar Harbor, ME). Il17ra�/� (28), Stat6�/� (29),
Tbx21�/� (30), Rorc�/� (31), and Tbx21�/� Rorc�/� mice, all on the B6 background, were bred and
maintained in the animal facility at the University of Pittsburgh and Washington University in St. Louis,
MO. Stat1�/� mice were a kind gift from John Alcorn (University of Pittsburgh). Experimental mice were
age and sex matched and used between the ages of 6 and 8 weeks. All mice were used following the
National Institutes of Health guidelines for housing and care of laboratory animals and in accordance
with University of Pittsburgh and Washington University in St. Louis Institutional Animal Care and Use
Committee guidelines. All efforts were made to minimize suffering and pain as described in these
approved protocols.

Experimental infections. M. abscessus strain L948 (ATCC 19977) was grown in Middlebrook 7H9
broth containing 0.05% Tween 80 to mid-log phase and frozen in 1-ml aliquots at �80°C. For M.
abscessus infections, animals underwent oropharyngeal infection with 2 � 104 CFU of bacteria using the
tongue-pull method (32). Briefly, mice were anesthetized with 3% isoflurane and suspended by their
front incisors, and the tongue was extended using forceps. The bacterial suspension was pipetted into
the trachea, and the tongue was held until normal breathing resumed. For 14-day experiments, mice
underwent infection with M. abscessus on day 0. For 30-day experiments, mice underwent repeat
infections with M. abscessus on days 0, 7, 14, and 21. Lung bacterial burden was established by plating
out organ homogenates on 7H10 agar plates. A. fumigatus Fresenius (ATCC 42202) was grown on potato
agar dextrose medium. For coinfection with A. fumigatus, mice underwent a single oropharyngeal
infection with 2.5 � 107 A. fumigatus conidia 3 days prior to the first M. abscessus challenge as described
above.

Lung single-cell preparation and detection of cytokine-producing cells by ELISpot assay. Lung
suspensions from M. abscessus-infected mice were prepared as described previously (33) and were used
in enzyme-linked immunosorbent spot (ELISpot) assays as described below. Antigen-specific gamma
interferon (IFN-�)-producing and IL-17-producing cells were analyzed by ELISpot assay. MultiScreen-HA
filter plates (Millipore, Billerica, MA) were coated with antibodies to IL-17 (R&D Systems, Minneapolis,
MN). Single-cell suspensions were added to the plate at a starting concentration of 1 � 105 cells/well and
doubling dilutions were made. Cells were cultured overnight in the presence of 1 � 106 irradiated
splenocytes, 10 �g/ml of heat-killed M. abscessus, and 10 U/ml of recombinant mouse IL-2 (eBioscience,
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San Diego, CA). The following day, biotinylated IL-17 antibody (eBioscience) was added and incubated
overnight. Plates were developed by incubation with streptavidin-alkaline phosphatase (Vector Labora-
tories, Burlingame, CA) for 2 h, followed by incubation with nitroblue tetrazolium (NBT)/5-bromo-4-
chloro-3-indolylphosphate (BCIP) (Sigma-Aldrich, St. Louis, MO). Spots were enumerated using a CTL-
ImmunoSpot analyzer (CTL, Shaker Heights, OH), and the frequency and total number of responding cells
were calculated as described before (33).

Surface and cytokine staining using flow cytometry. Lungs were collected at specified time
points, digested with collagenase D (3 mg/ml; Roche Applied Science, Penzberg, Germany) in Dulbecco
modified Eagle medium (DMEM) for 1 h at 37°C, pressed through 100-�m cell strainers (BioExpress,
Kaysville, UT) and treated with ammonium chloride to lyse red blood cells. Single-cell suspensions were
incubated in incomplete DMEM (iDMEM) with 10% fetal bovine serum (FBS), phorbol myristate acetate
(PMA; 50 ng/ml; Sigma-Aldrich), ionomycin (750 ng/ml; Sigma-Aldrich), and GolgiPlug (Becton Dickinson
Pharmingen, Franklin Lakes, NJ) for 4 h at 37°C. Cells were treated with 100 �l of a 1:100 dilution of Fc
Block (anti-CD16/CD32; BD Biosciences, San Jose, CA) before surface staining for CD3, CD4 CD44, MHC
class II, CD11c, CD11b, and T cell receptor (TCR) ��. Cells were then fixed and permeabilized using a
Cytofix/Cytoperm fixation permeabilization kit (BD Biosciences) before intracellular staining for IL-17 and
IFN-�. Stained cells were acquired on an LSRII (BD Biosciences) flow cytometer, and results were analyzed
using FlowJo (Treestar, Ashland, OR).

Gene expression analysis. To analyze gene expression, lungs were placed in TRIzol reagent (Life
Technologies, Carlsbad, CA), homogenized, and processed according to the manufacturer’s protocol. One
microgram of RNA was used to synthesize cDNA (iScript; Bio-Rad, Hercules, CA). Real-time PCR primers
for Il17a and the hypoxanthine guanine phosphoribosyl transferase gene (Hprt) were purchased from
Applied Biosystems (Foster City, CA) and used with TaqMan Universal PCR master mix (Applied Biosys-
tems). PCR was performed on a Bio-Rad CFX96 real-time system.

Histologic data. Lungs from infected mice were inflated with 10% neutral buffered formalin and
paraffin embedded. Lung sections were stained with hematoxylin and eosin (H&E) stain and processed
for light microscopy. Slides were scored by one of the authors (T.D.O.), who was blinded to the sample
groups. Every field in the entire lung was observed with a light microscope, and collections of cells
representing inflammatory nodules were counted.

Generation of BMDMs. Bone marrow-derived macrophages (BMDMs) were generated from C57BL/6
mice. Cells were extracted from femurs, and 1 � 107 cells were plated with 10 ml of complete DMEM (cDMEM)
supplemented with 20 ng/ml of mouse recombinant granulocyte macrophage colony-stimulating factor
(mrGM-CSF) (Peprotech, Rocky Hill, NJ). Cells were cultured for 3 days at 37°C in 5% CO2, after which an
additional 10 ml of cDMEM containing 20 ng/ml of mrGM-CSF was added. On day 7, the adherent cells were
collected by scraping after centrifugation, counted, and plated for subsequent assays.

In vitro M. abscessus killing assay. For killing assays, 5 � 105 BMDMs were plated in 24-well plates,
rested overnight, and then pretreated with iDMEM, 100 �g/ml of zymosan, or curdlan in iDMEM for 24
h. BMDMs were then infected with M. abscessus at a multiplicity of infection (MOI) of 1 for 48 h. At the
end of the culture period, macrophages were washed twice with phosphate-buffered saline (PBS) and
lysed by a 5-min incubation with 0.05% sodium dodecyl sulfate (SDS) in PBS. Following SDS neutraliza-
tion with 10% bovine serum albumin in PBS, intracellular M. abscessus burden was determined by plating
of serial dilutions on 7H10 agar (BD, Franklin Lakes, NJ) plates.

Detection of nitrites by the Griess reaction. Culture supernatants were assessed for nitrite production
using a Griess reagent system kit (Promega, Madison, WI), according to the manufacturer’s instructions.

Statistical analysis. Differences between the means of multiple experimental groups were analyzed
using one-way analysis of variance (ANOVA) with Tukey’s post hoc test unless otherwise indicated. For all
other analyses, we used the two-tailed Student t test. Differences were considered significant when the
P value was �0.05. For all figures, data represent means � standard deviations (SD). All analyses were
performed using GraphPad Prism software (GraphPad Software, La Jolla, CA).
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