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Targeting dendritic cells to accelerate T-cell
activation overcomes a bottleneck in tuberculosis
vaccine efficacy
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& Shabaana A. Khader1

The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to

Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity

induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs),

and subsequent delay in antigen presentation and activation of vaccine-induced CD4þ T-cell

responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed

DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in

accumulation of vaccine-induced CD4þ T-cell responses. In addition, activating endogenous

host CD103þ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation

of vaccine-induced lung CD4þ T-cell responses and limit early M. tuberculosis growth. Thus,

our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-

induced T-cell responses on M. tuberculosis infection, and provide insights to overcome

bottlenecks in TB vaccine efficacy.
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T
uberculosis (TB) is a leading cause of death by infection 1.
TB is caused by aerosol exposure to the intracellular
bacterium Mycobacterium tuberculosis (Mtb), leading to

either latent disease or active pulmonary disease. The only
currently licensed vaccine against TB is Mycobacterium bovis
Bacille Calmette–Guerin (BCG). Although BCG vaccination is
effective against childhood forms of TB1, and in decreasing
childhood TB morbidity1, it provides variable efficacy against
adult pulmonary TB. Thus, over the past two decades, concerted
efforts have been made to develop new vaccines for TB that will
provide improved protection on Mtb exposure. Modern
candidate TB vaccines have focussed on induction of T-cell
responses, primarily CD4þ T cells producing interferon gamma
(IFNg)2. More recently, an important role for mucosal interleukin
17A (IL-17A) in vaccine-induced protection against TB disease
has been shown3–6. Thus, induction of lung-resident IL-17A-
producing CD4þ T-cell populations by TB vaccines is also being
explored2,4,5,7. Despite these efforts, most TB vaccines reduce the
burden of lung Mtb by B0.5–1.0 log in animal challenge
models3,8–11. Recombinant live mycobacterial vaccines confer
improved protection (B2 log reduction), when compared
with subunit and virally vectored TB vaccines. Examples of
recombinant vaccines include the recombinant Mycobacterium
smegmatis vaccine, which induces sterilizing immunity in the
liver, but not the lung12; recombinant BCG over-expressing
Listeria monocytogenes listeriolysin and lacking urease C11,13; and
the recombinant Mtb vaccine lacking PhoP14. Other work has
highlighted the benefit of administering recombinant Mtb
vaccines mucosally, showing that macaques vaccinated with the
attenuated Mtb mutant lacking SigH had sterile protection in
some TB lesions15. Although these results are promising,
considerable challenges are associated with the design and
implementation of a recombinant Mtb vaccine to be delivered
mucosally via the lungs, particularly in light of the TB–HIV
co-epidemic. Thus, it is critical to fully understand the early
events occurring in the vaccinated Mtb-infected lung.

After Mtb infection of naive mice, accumulation of activated
lung CD4þ T cells is delayed, occurring between 14 and 21 days
post Mtb infection (dpi)16,17. This delay is thought to be due to
Mtb-mediated inhibition of early antigen presentation by antigen-
presenting cells (APCs)18–20. Even in the presence of an existing
Mtb-specific vaccine-induced CD4þ T-cell population in the
lung, CD4þ T-memory cells do not accumulate in the lung until
12–14 dpi3,6,21. Priming of T-cell responses following primary
Mtb infection requires trafficking of Mtb-infected DCs from the
lungs to the lymph nodes (LNs)20,22. Furthermore, Mtb-infected
DCs do not efficiently present antigen directly to Mtb-specific
CD4þ T cells, but antigen is transferred from Mtb-infected DCs
to uninfected bystander DCs in the LNs, for antigen presentation
to naive CD4þ T cells22. On Mtb infection, even vaccine-induced
memory T cells accumulate in the LNs before mobilization to
the lungs6. Thus, in the current study, we hypothesized that the
delay in accumulation of lung vaccine-induced CD4þ T cells in
vaccinated Mtb-infected hosts is due to a delay in antigen
presentation by Mtb-infected APCs, thus resulting in a bottleneck
and preventing sterilizing immunity to Mtb infection. We show
that we can overcome the delay in accumulation of vaccine-
induced memory CD4þ T cells by transferring exogenously
primed activated DCs into the lungs of vaccinated mice at the
time of Mtb infection. DC transfer into vaccinated Mtb-infected
hosts results in rapid activation of vaccine-induced CD4þ T-cell
responses, substantial changes in the lung micro-environment,
activation of lung alveolar macrophages and early Mtb control.
Furthermore, these protective mechanisms are dependent on
CD103þ DCs and the CD40–CD40L activation pathway, as
host-directed therapeutics targeting these pathways in vaccinated

Mtb-infected mice can mimic the protective effects of pulmonary
DC transfer. Thus, we have determined a key bottleneck for the
failure of TB vaccines to induce sterilizing protection against
Mtb infection. These results provide a roadmap for the type of
immune responses that a sterilizing TB vaccine should induce,
representing a milestone in our mechanistic understanding of TB
vaccine-mediated immune responses.

Results
DC transfer confers superior vaccine-induced Mtb control.
Following Mtb infection, vaccine-induced CD4þ T-cell responses
are delayed in vaccinated hosts3,6, and could be a likely reason for
the failure of TB vaccines to induce sterilizing immunity.
Therefore, we first assessed whether a delay in accumulation of
CD4þ T-cell recall responses was due to an inherent deficiency
in the ability of the vaccine-induced T cells to respond to
antigen exposure. Thus, naive CD4þ T cells were isolated from
Mtb-specific immunodominant antigen 85B (Ag85B) T-cell
receptor transgenic (TCR) mice and adoptively transferred into
congenic C57BL/6 (B6) mice, which were vaccinated
subcutaneously (s.c.) with BCG, rested for 4 weeks followed by
a mucosal boost with the CD4þ T-cell epitope Ag85B240–254.
Following a period of rest for 4 weeks, lung CD4þ T cells were
isolated and cultured in vitro in the presence of Ag85B-pulsed
DCs. Recall Ag85B-specific CD4þ T cells proliferated rapidly,
underwent activation, produced cytokines and on co-culture
with Mtb-infected macrophages could mediate Mtb control
(Fig. 1a–d). These data suggest that vaccine-induced CD4þ

T cells can rapidly respond to Mtb antigen, but activation is
delayed in vivo following Mtb infection3,6,21. This is not due to a
limitation of Mtb antigen availability, as infection of vaccinated
mice with high doses (B1,000 c.f.u.) of Mtb did not improve
vaccine-induced Mtb control (Supplementary Fig. 1a)23.
T regulatory cells induced in response to Mtb infection are
known to suppress early T-cell responses24. As before25, however,
depletion of T regulatory cells in vaccinated B6 mice early
following Mtb infection did not improve vaccine-induced Mtb
control, instead increasing susceptibility to Mtb infection
(Supplementary Fig. 1b). Thus, although recall CD4þ T-cell
responses are delayed in vivo in Mtb-infected hosts3,6,21, vaccine-
induced CD4þ T cells can rapidly respond ex vivo to activate
macrophages for Mtb control.

To overcome the delayed activation of CD4þ T-cell recall
responses on Mtb infection in vivo, we addressed whether
delivery of Mtb antigen-pulsed DCs into the lungs of
Mtb-infected-vaccinated mice could overcome this bottleneck
and improve recall vaccine-induced CD4þ T-cell immunity. B6
mice were thus vaccinated with BCG, rested for 4 weeks, followed
by a mucosal boost with Ag85B240–254. Mice were further rested
for 4 weeks, after which they were challenged with a clinical
W-Beijing Mtb strain, HN878 (ref. 26). At the time of
Mtb challenge, vaccinated mice received Ag85B240–254-pulsed B6
bone marrow-derived DCs (BMDC) delivered intratracheally
(i.t., DC transfer). While vaccination and mucosal boost reduced
lung Mtb burden as before4, B6 DC transfer into vaccinated mice
reduced lung Mtb burden by B98.6%, when compared with the
burden in unvaccinated Mtb-infected mice (Supplementary
Fig. 2a,b). Pulmonary delivery of Ag85B240–254 peptide alone
did not induce the superior protection seen with DC transfer in
vaccinated mice (Supplementary Fig. 2a), further suggesting that
antigen availability was not the major reason for delayed vaccine-
induced CD4þ T-cell recall responses. To further improve the
ability of antigen-pulsed DCs to activate CD4þ T cells following
Mtb infection, we next stimulated DCs with the Dectin-1 agonist
zymosan (Z-DC)27 at the time of antigen pulsing. Activating
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Z-DC, induced proinflammatory cytokines such as IL-23, IL-1b
and IL-6 (Supplementary Fig. 3a–c), but also induced IL-10
(Supplementary Fig. 3d). IL-10 induction can dampen vaccine-
induced immunity to Mtb infection28,29, and we next tested
whether use of B6 DCs or Il10� /� DCs treated with zymosan
was more effective on transfer at conferring Mtb control in

vaccinated hosts. B6 DC transfer into vaccinated Mtb-infected
mice as before reduced Mtb burden significantly, when compared
with vaccinated Mtb-infected hosts, while transfer of B6 Z-DCs
had a small but significant improvement in Mtb control,
when compared with vaccinated hosts receiving B6 DC transfer
(Supplementary Fig. 2b). In sharp contrast, we found that
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Figure 1 | Z-DC transfer in vaccinated mice confers superior Mtb control. (a–d) Naive CD4þ T cells from Ag85B TCR Tg Thy1.1þ mice were transferred

into B6 mice and were vaccinated with BCG s.c. followed by mucosal boost with Ag85B240–254 peptide in mucosal adjuvant, rested for 4 weeks, before

isolating total lung cells and labelling with CFSE. Cells were cultured for 3 days with either Ag85B antigen alone with or without Mtb, or BMDC pulsed with

Ag85B antigen. (a) Expansion and (b) proliferation of Mtb-specific cells was assessed by flow cytometry and CFSE dilution. (c) Cytokine production was

measured in supernatants. However some cytokine levels are not visible on the scale used. (d) Six day-stimulated T cells were cultured with Mtb-infected

BMDMs additional 6 days and intracellular Mtb c.f.u. determined by plating. (e–i) B6 mice were vaccinated with BCG s.c. followed by mucosal boost with

Ag85B240–254 peptide in mucosal adjuvant, rested for 4 weeks and infected with B100 c.f.u. Mtb HN878. Vaccinated mice received Ag85B-Z-DC on � 1

and 4 dpi. Lungs were collected and flow cytometry was used to assess (e) CD44 expression on CD3þCD4þ T cells, and (f) IL-17 and IFN-g production by

Ag85B-specific CD4þ CD44hi T cells in the lungs. (g) Flow cytometry was used to assess MHC-II mean fluorescence intensity (MFI) on lung alveolar

macrophages, and fold change relative to unvaccinated was calculated. A representative plot of MHC-II expression on alveolar macrophages from

unvaccinated, vaccinated and vaccinated mice receiving Z-DC transfer is shown at 8 dpi. (h) Lung bacterial burden was determined by plating. (i) B-cell

lymphoid follicle formation was determined by CD3 (red) and B220 (green) staining on formalin-fixed, paraffin-embedded sections by

immunofluorescence staining. The average size of B-cell follicles per lobe was quantified using the automated tool of the Zeiss Axioplan 2 microscope in

squared microns, representative images of B-cell follicles are shown. (a–d) n¼ 3–4 technical replicates±s.d., (e–i) n¼4–5 biological replicates±s.d.

*Pr0.05, **Pr0.01, ***Pr0.001 by one-way analysis of variance (ANOVA) (a–d) or two-way ANOVA (e–i). ND, not detected. Dotted lines on h

represent the limit of detection by plating.
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vaccinated hosts receiving Z-DCs from Il10� /� mice resulted in
far superior Mtb control, with Mtb burden-bordering limit of
detection by plating assays (Supplementary Fig. 2b, limit of Mtb
detection is B75–100 c.f.u. per lung, Mtb burden from three out
of five mice were in this range, B99.97% reduction in Mtb
burden, when compared with unvaccinated Mtb-infected mice).
The near-sterilizing protection in vaccinated mice receiving
Il10� /� Z-DC transfer coincided with increased frequency of
both activated IL-17-producing and IFNg-producing Mtb-specific
CD4þ T cells in the lungs (Supplementary Fig. 2c,d; gating
strategy in Supplementary Fig. 4a). Indeed, B6 Z-DC transfer
also resulted in increased frequency of lung IL-17-producing
Mtb-specific CD4þ T-cell responses, but failed to improve
IFNg-producing CD4þ T-cell responses, when compared with
responses in vaccinated hosts (Supplementary Fig. 2c,d). These
results together suggest that Z-DCs generated from Il10� /� mice
on transfer into vaccinated hosts can overcome a TB vaccine
bottleneck, and confer superior protection against Mtb infection
by significantly accelerating the accumulation of Mtb-specific
cytokine-producing CD4þ T-cell vaccine responses. Thus, in all
experiments in the remainder of the study, Z-DCs from Il10� /�

mice (Ag85B-Z-DC) were used for DC transfer.

DC transfer accelerates vaccine CD4þ T-cell activation. Having
established the ability of Z-DC transfer to significantly reduce
Mtb burden in the lungs of vaccinated mice, we then assessed the
kinetics of immune responses in Mtb HN878-infected vaccinated
mice receiving Z-DC transfer. Vaccine-induced CD4þ T-cell
responses and activation of lung myeloid cells are not detected in
vaccinated hosts until 12–14 dpi following Mtb challenge3. In
contrast, we observed significant early accumulation (8 dpi) of
activated CD4þ T cells in vaccinated Mtb-infected mice receiving
Z-DC transfer, when compared with vaccinated Mtb-infected
mice (Fig. 1e; gating strategy in Supplementary Fig. 4a). In
addition, increased numbers of Mtb-specific CD44hi-activated
cells producing the cytokines IL-17 and IFN-g accumulated early
in lungs of vaccinated Mtb-infected mice receiving Z-DC transfer,
when compared with vaccinated Mtb-infected mice or naive
Mtb-infected mice (Fig. 1f). As noted previously, activated T-cell
responses in vaccinated mice not receiving Z-DC transfer
accumulated later at 14 dpi (Fig. 1f)6, while T-cell responses
between the different groups were comparable at later time
points. These protective and early activation events in vaccine-
induced CD4þ T-cell responses coincided with increased early
upregulation of major histocompatibility complex (MHC)-II
expression on lung alveolar macrophages in Z-DC-recipient-
vaccinated Mtb-infected mice, when compared with levels
expressed in unvaccinated mice (Fig. 1g; gating strategy in
Supplementary Fig. 4b). Importantly, the early and rapid
activation of vaccine-induced CD4þ T-cell responses, and
concomitant activation of alveolar macrophages was associated
with complete control of Mtb growth, maintaining burdens at
levels of initial inoculum up to 20 dpi in vaccinated Mtb-infected
mice receiving Z-DC transfer (Fig. 1h). This is in contrast to naive
and vaccinated Mtb-infected mice, in which Mtb burden
increased in the lungs over time (Fig. 1h). Finally, Z-DC
transfer at the time of Mtb challenge resulted in long-lasting
protection up to 40 dpi, with Z-DC transfer-recipient mice still
maintaining significantly lower bacterial burdens in the lungs
(Fig. 1h). As expected, at later time points, vaccinated mice
showed similar Mtb burden as unvaccinated mice30, suggesting
that while Z-DC transfer provides long-lasting vaccine-induced
immunity in Mtb HN878-infected mice, endogenous vaccine-
induced responses are not long-lasting and are lost over time.
Furthermore, robust rapid formation of B-cell follicles-

harbouring localized T cells could be detected in the lungs of
vaccinated Mtb-infected mice receiving Z-DC transfer (Fig. 1i),
indicating early development of protective lung granulomas.
Importantly, even on challenge with a Euro-American Mtb
strain, H37Rv, we found that Z-DC transfer effectively
conferred superior Mtb control by activating alveolar
macrophages and accelerating accumulation of activated CD4þ

T cells (Supplementary Fig. 5a–d). Thus, our results suggest that
DC transfer can effectively induce superior vaccine control on
challenge with different Mtb strains. As Mtb HN878 is a clinically
relevant rapidly emerging Mtb strain, all experiments in the
remainder of the study was carried out with Mtb HN878. Thus,
our data together suggest that DC transfer is effective in rapid
restimulation of vaccine-induced T cells to produce cytokines and
localize within lymphoid follicles to activate macrophages for
rapid Mtb control, which is sustained long term, and across
different Mtb strains.

DC transfer-mediated Mtb control is CD4þ T-cell dependent.
To test the durability of Z-DC transfer in inducing superior
vaccine-induced immunity against Mtb challenge, BCG-vacci-
nated mice were boosted mucosally and rested for 10 weeks after
vaccination, and Z-DC transfer and Mtb HN878 infection were
carried out as before. Indeed, we found that Z-DC transfer still
induced superior protection in long-term-rested-vaccinated hosts,
with Mtb burden significantly lower and at levels of detection,
when compared with control vaccinated Mtb-infected mice
that were also rested for 10 weeks before Mtb challenge
(Supplementary Fig. 6a). Importantly, vaccinated mice receiving
Z-DC transfer also showed increased accumulation of activated
IL-17þ and IFN-gþ CD4þ T cells, when compared with CD4þ

T-cell responses in vaccinated and unvaccinated Mtb-infected
mice (Supplementary Fig. 6b,c). These data suggest that Z-DC
transfer-induced protection confers superior Mtb control even
following a prolonged period of rest, supporting the durability of
DC transfer-mediated protective efficacy in overcoming the TB
vaccine bottleneck.

Previous studies have employed administration of DCs as
vaccination strategy31,32, during which mice were immunized
with antigen-primed DCs, and then rested before Mtb infection.
In contrast, the approach taken here is to enhance antigen
presentation at the time of Mtb infection by administering DCs
mucosally at the time of Mtb infection. Thus, we tested whether
use of Z-DCs as a mucosal boost to BCG vaccination, would
similarly induce superior Mtb control. Indeed, we show that
pulmonary administration of Z-DCs as a mucosal boost to BCG
vaccination only had a small protective effect in vaccinated hosts,
and did not match the near-sterilizing Mtb control seen, when
Z-DC transfer was carried out at the time of Mtb infection in
vaccinated hosts (Supplementary Fig. 6d). These data show
that the improved protection conferred by Z-DC transfer is
specifically due to the enhanced antigen presentation and
accelerated T cells priming at the time of Mtb infection, and
use of DCs as vaccination tool does not enable the superior Mtb
control in vaccinated hosts.

Our data show that DC transfer into vaccinated mice at the time
of Mtb challenge accelerates Mtb-specific CD4þ T-cell responses
and confers superior protection against Mtb challenge. Thus, we
next addressed whether DC transfer-induced immunity in
vaccinated hosts was dependent on vaccine-induced T-cell
responses, or whether DC transfer will similarly induce near-
sterilizing immunity in previously unvaccinated Mtb-infected mice
by accelerating priming of naive CD4þ T-cell responses. Thus,
unvaccinated B6 mice or B6 mice that were BCG vaccinated and
mucosally boosted were rested for 4 weeks, and then received Z-DC
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transfer at the time of Mtb challenge, and Mtb control was
determined. Our data show that while vaccinated Mtb-infected
mice receiving Z-DC demonstrated superior bacterial control as
before, Mtb control in unvaccinated mice receiving Z-DC transfer
was less effective and resembled Mtb control seen in vaccinated
hosts not receiving Z-DC transfer (Fig. 2a). Furthermore, although
the numbers of IL-17 and IFN-g-producing Mtb-specific CD4þ

T cells in Z-DC transfer-recipient Mtb-infected mice were
significantly higher, when compared with Mtb-infected mice not
receiving Z-DC, the numbers were reduced, when compared with
numbers seen in vaccinated mice receiving Z-DC transfer
(Fig. 2b,c). In addition, T-cell localization within B-cell follicles in
vaccinated mice receiving Z-DC transfer was higher, when
compared with unvaccinated mice that received Z-DC transfer
(Fig. 2d). These results together suggest that DC transfer into
unvaccinated hosts can also accelerate the priming of naive CD4þ

T cells into cytokine-producing Mtb-specific CD4þ T-cell
responses and improve Mtb control. However, the protection in
naive Mtb-infected mice receiving Z-DC transfer is not as effective
as seen in vaccinated mice receiving Z-DC transfer, suggesting that

Z-DC transfer mediating near-sterilizing immunity occurs only in
previously vaccinated hosts.

To further confirm that DC transfer-mediated protection is
vaccine-induced CD4þ T-cell-dependent, vaccinated mice
receiving Z-DC transfer received a CD4 depleting antibody at
early time points following Mtb challenge, and Mtb control in
vaccinated hosts receiving Z-DC transfer was assessed at 20 dpi.
Our data show that early depletion of CD4þ T cells in vaccinated
mice receiving DC transfer reversed the superior protection
(Fig. 2e) and coincided with loss of early accumulation of
IFN-g- and IL-17-producing Mtb-specific CD4þ T-cell responses
(Fig. 2f,g). These results together project that the near-sterilizing
protection seen on DC transfer in vaccinated host is dependent
on the presence of vaccine-induced CD4þ T-cell responses,
as either absence of vaccination or absence of CD4þ T cells
abrogates the superior near-sterilizing protection.

DC transfer overcomes bottlenecks in different vaccinations.
Our data show that Z-DC transfer accelerates vaccine-induced
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Figure 2 | Z-DC transfer-mediated superior Mtb control is CD4þ T-cell dependent. (a–d) Unvaccinated B6 mice, or B6 mice vaccinated with BCG s.c.

followed by mucosal boost with Ag85B240–254 peptide in mucosal adjuvant, were rested for 4 weeks, and Mtb HN878-infected (B100 c.f.u.) and treated

with Ag85B-Z-DC on � 1 and 4 dpi, and (a) bacterial burden was assessed by plating at 20 dpi. Flow cytometry was used to determine production of

(b) IL-17 and (c) IFN-g by Ag85B-specific CD4þCD44hi T cells. (d) B-cell lymphoid follicle formation was determined by CD3 (red) and B220 (green)

staining on formalin-fixed, paraffin-embedded sections by immunofluorescence staining on 20 dpi. The average size of B-cell follicles per lobe was

quantified using the morphometric tool of the Zeiss Axioplan. (e–g) B6 mice were vaccinated as above, and infected with Mtb HN878 (B100 c.f.u.) via

aerosol. Mice received Ag85B-Z-DC transfer on � 1 and 4 dpi; and were treated with 300 mg GK1.5 (anti-CD4) or isotype control delivered i.p. on 0 and 7

dpi. Lungs were collected at 20 dpi. (e) Lung bacterial burden was determined by plating. Flow cytometry was used to assess (f) IL-17 and (g) IFN-g
production by Ag85B-specific CD4þCD44hi T cells. (a–d) n¼ 8–10 biological replicates±s.d., (e–g) n¼ 5–10 biological replicates±s.d., *Pr0.05,

**Pr0.01, ***Pr0.001 by one-way analysis of variance or Kruskall–Wallis test (e) or Student’s t-test (d) (UnVacþAg85B-Z-DC compared with

VacþAg85B-Z-DC). Dotted lines on bacterial burden plots represent the limit of detection by plating.
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Mtb-specific CD4þ T-cell responses in mice vaccinated with
BCG and mucosally boosted with Ag85B240–254 to confer superior
protection on Mtb challenge. Thus, we next tested whether Z-DC
transfer could be broadly used to provide superior protection in
different vaccination strategies. Recent work by us and others has
highlighted the importance of a lung-resident T-cell responses
following mucosal vaccination in protection against TB disease4,5.
In addition, mucosal vaccination induces potent lung-resident
CD4þ T-cell responses, while standard parenteral BCG
vaccination induces potent systemic vaccine-induced CD4þ

T-cell responses (Supplementary Fig. 7a,b). Thus, we assessed
whether Z-DC transfer would improve Mtb protection when used
in standard BCG vaccination, when compared with mice that
only received mucosal vaccination. B6 mice were vaccinated with
either a mucosal TB vaccine consisting of Ag85B240–254 in
mucosal adjuvant4 or parenterally with BCG28, rested, and on
Mtb challenge received Z-DC transfer. Z-DC transfer provided
superior vaccine-induced Mtb control in both mucosally
vaccinated and BCG-vaccinated mice (Fig. 3a), suggesting that
DC transfer functions broadly in different vaccination strategies.
We found that while Z-DC transfer in mucosally vaccinated mice
induced accumulation of large numbers of IL-17-producing Mtb-
specific CD4þ T-cell responses, IFN-g-producing CD4þ T-cell
responses were not significantly increased (Fig. 3b,c). In contrast,
BCG-vaccinated mice receiving DC transfer exhibited increased
both IFN-g and IL-17 CD4þ T-cell responses (Fig. 3b,c). Indeed,
the improved CD4þ T-cell recall responses in vaccinated hosts
receiving Z-DC transfer coincided with enhanced activation of
alveolar macrophages when compared to unvaccinated hosts
(Fig. 3d). Thus, our data show that although the effector cytokine
mechanism by which Z-DC transfer confers superior protection
in vaccination models may be different, Z-DC transfer can rapidly
activate both systemic and mucosal CD4þ T-cell responses to
induce superior protection against Mtb control in different
vaccine strategies and is broadly applicable.

Identifying host pathways to overcome TB bottlenecks.
Transfer of exogenously primed DCs into vaccinated mice can
effectively accelerate the vaccine-induced CD4þ T-cell response
following Mtb infection, and improve bacterial control. DC
transfer as therapy for use in Mtb-infected individuals in TB-
endemic areas; however, is logistically difficult to translate for
human use as timing of Mtb exposure is impossible to predict.
Thus, to identify endogenous host pathways that could be tar-
geted for future use, we carried out transcriptional profiling in
lungs of vaccinated Mtb-infected mice receiving DC transfer, and
compared it with gene expression profiles in lungs from Mtb-
infected-vaccinated mice. Several genes involved in early T-cell
activation, macrophage function, as well as chemokines involved
in B-cell follicle formation, were significantly upregulated
(Supplementary Tables 1 and 2; Fig. 4a; validated in
Supplementary Fig. 8). We found that the genes induced rapidly
at 8 dpi in vaccinated Mtb-infected mice receiving Z-DC transfer,
were not upregulated until 21 dpi in Mtb-infected mice
(Fig. 4b)33. These results further support our findings that
protective immune responses are substantially accelerated in
vaccinated Mtb-infected mice receiving Z-DC transfer.

To identify pathways that were being induced in lungs of
vaccinated mice receiving Z-DC transfer, we cross referenced
the transcriptional signature of the vaccinated Z-DC-recipient
Mtb-infected mice (Supplementary Table 1) against all publicly
available RNASeq datasets. In this unbiased search, we found the
significant regulation of immune pathways associated with early
T-cell activation and APC function, present in our transcriptional
data also coincided with expression in the lungs of wild-type mice

infected with the pulmonary pathogen, Pneumocystis murina.
Specifically, we found that several genes were induced both in the
lungs of vaccinated Mtb-infected mice receiving Z-DC transfer,
and following P. murina infection in wild-type mice. In contrast,
these genes were not upregulated in Cd40l� /� mice infected
with P. murina (Fig. 4c), suggesting CD40 axis dependence
underlying the accelerated vaccine response in Z-DC transfer-
recipient mice. Furthermore, Batf3 is a transcription factor that
drives development of CD103þ DCs, which are important
for priming Th1 and Th17 responses34,35. Batf3 messenger RNA
expression was increased in vaccinated Mtb-infected hosts
receiving Z-DC transfer (Supplementary Fig. 8) and coincided
with increased accumulation of Batf3-dependent CD103þ DCs
(Fig. 4d). Thus, we have identified a CD103þ DC and CD40
pathway that can potentially be targeted for improved Mtb
control in vaccinated mice.

Activating CD103þ DCs improves Mtb control by vaccines.
CD103þ DCs accumulate in vaccinated Mtb-infected hosts
receiving DC transfer, and the CD40 pathway is activated in
Z-DC transfer-induced protection against TB disease in
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Figure 3 | Z-DC transfer improves Mtb control in different vaccines. Mice

were mucosally vaccinated with three doses of Ag85B240–254 peptide in

mucosal adjuvant, or parenterally vaccinated with BCG s.c., rested for 4

weeks, and were Mtb HN878-infected (B100 c.f.u.) and received Ag85B-Z-

DC transfer as described previously. (a) Lung bacterial burden was

assessed at 20 dpi by plating. Flow cytometry was used to determine

(b) IL-17 and (c) IFN-g production by Ag85B-specific CD4þ CD44hi T cells.

(d) The mean fluorescence intensity (MFI) was calculated to determine

level of MHC-II expression on alveolar macrophages, and fold change MFI

relative to UnVac was calculated for each group at 20 dpi. n¼4–5

biological replicates±s.d. *Pr0.05, **Pr0.01, ***Pr0.001 by one-way

analysis of variance or Kruskall–Wallis test (c), or Student’s t-test

(d) (BCG Vac compared with BCG VacþAg85B-Z-DC). Dotted lines on

bacterial burden plots represent the limit of detection by plating.
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Figure 4 | Z-DC transfer induces early genes associated with APC activation. B6 mice were vaccinated with BCG s.c. followed by mucosal boost with

Ag85B240–254 peptide in mucosal adjuvant, rested for 4 weeks, and Mtb HN878-infected (B100 c.f.u.) and treated with Ag85B-Z-DC on � 1 and 4 dpi.

RNA-seq was performed on lungs at 8 dpi. (a) Expression values of each biological replicate (n¼ 5 for Vac, n¼4 for VacþAg85B-Z-DC) for each group of a

subset of selected genes of interest (all selected genes had a differential expression of at least twofold). These genes were differentially expressed using

CuffDiff output with a Po0.05, and Benjamini–Hochberg false discovery rate (FDR) of 5%. The scaled expression of each replicate, denoted as the row

Z-score, is plotted in red–blue colour scale with red indicating high expression and blue indicating low expression. q values for each gene of interest are shown

in Supplementary Table 1 for the top 100 upregulated genes. (b) Expression of the top 100 upregulated genes shown in Supplementary Table 1 was considered

in the published transcriptional data following expression in lungs of mice infected (red curves) with Mtb, or uninfected controls (blue curves) along the

timecourse of 14, 21, 28 and 42 dpi33. (c) Gene Set Enrichment Analysis was used to analyse the expression of the top 100 upregulated genes shown in

Supplementary Table 1 in the context of the infection model of Cd40l� /� mice with P. murina. Genes differentially expressed between wild type (WT) and

Cd40l� /� mice on 32 days post-P. murina infection were compared and the top 1,000 expressed genes shown in the heat map, ranked by the level of

differential expression between the two genotypes70. Orange lines indicate positions of 100 genes from Supplementary Table 1, Po10� 3. (d) Numbers of

CD11cþCD103þ cells in lungs of Mtb-infected-vaccinated Z-DC-recipient mice was determined using flow cytometry. n¼4–5 biological replicates±s.d.

***Pr0.001 by Student’s t-test.
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vaccinated hosts. To target endogenous host mucosal DCs, we
then assessed if activation of the CD40 pathway and targeting
endogenous CD103þ mucosal DCs in standard BCG-vaccinated
Mtb-infected mice, can mimic the effects of DC transfer and
induce superior Mtb control. Amphiphilic-CpG (amph-CpG) in
mice is a modified Toll-like receptor (TLR) 9 agonist that is
efficiently taken up by DCs and macrophages, and enhances
T-cell responses to peptide vaccines36. In addition, treatment of
DCs with amph-CpG upregulates CD103 expression (Fig. 5a).
FGK4.5 is an agonistic CD40 antibody that has been shown to
activate DCs in murine cancer treatment models37,38. Thus,
vaccinated Mtb-infected mice received amph-CpG along with
FGK4.5, or either amph-CpG or FGK4.5 alone, delivered i.t. at
� 1 and 4 dpi, and early vaccine responses and Mtb burden in the
lungs were assessed. We found that while delivery of either amph-
CpG alone or FGK4.5 alone did not induce significant vaccine
protection, delivery of amph-CpG and FGK4.5 together in
vaccinated mice results in early Mtb control, similar to that
seen in vaccinated Mtb-infected hosts receiving DC transfer
(Fig. 5b). Importantly, delivery of amph-CpG and FGK4.5
induced accelerated activation of vaccine-induced cytokine-
producing CD4þ T-cell responses (Fig. 5c–e) and coincided
with activation of lung alveolar macrophages (Fig. 5f). Moreover,
treatment with amph-CpG and FGK4.5 resulted in increased
accumulation of CD103þ lung DCs in Mtb-infected-vaccinated
mice (Fig. 5g; see gating strategy in Supplementary Fig. 4c). Thus,
our data suggest that targeting host endogenous CD103þ DCs
and activation of the CD40 pathway can overcome delayed
antigen presentation and results in rapid activation of vaccine-
induced T-cell responses and completely control Mtb growth.

Discussion
Thus far, the development of sterilizing vaccines against TB for
human use has not become a reality. This is especially concerning
considering the status of TB, as one of the leading causes of death
due to infectious diseases in the world today. In the current study,
we hypothesized that our inability to develop a sterilizing vaccine
against Mtb infection is not due to a failure of the vaccine to
induce effective T-cell responses, but due to a delay in antigen
presentation and subsequent delay in accumulation of vaccine-
induced T-cell responses. Indeed, we show here that vaccine-
induced T cells can respond to antigen exposure and induce
mycobactericidal activity ex vivo. Transfer of exogenously primed
DCs into lungs of vaccinated Mtb-infected mice can directly
activate vaccine-induced T cells in vivo, leading to accelerated
formation of protective B-cell follicles, rapid and early alveolar
macrophage activation, and early control of establishment of Mtb
infection. In addition, our results have identified novel mechan-
isms, involving CD103þ DCs and the CD40 activation pathway
that may be therapeutically targeted to improve vaccine-induced
protection during TB. Together, our data provide novel and
mechanistic insights into pathways that can be targeted to
generate sterilizing vaccine-induced immunity against TB.

Most modern TB vaccines induce lung and systemic Th1
and/or Th17 vaccine responses2. In animal models, however,
none of these vaccines induce sterilizing immunity to TB, instead
only decreasing the lung Mtb burden by 0.5–1.0 log (refs 3,8–11).
Our studies show that vaccine-induced CD4þ Mtb-specific
T cells isolated from the lung can undergo activation rapidly,
proliferate and produce both IFN-g and IL-17 ex vivo.
Importantly, we show that proliferating vaccine-induced CD4þ

T cells can activate macrophages to control Mtb, suggesting that
there is no inherent deficiency in vaccine-induced CD4þ recall
responses. In addition, lung-resident vaccine-induced CD4þ

T-cell responses are long lasting39 and adoptive transfer of
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Figure 5 | Amph-CpG and CD40 agonist improves Mtb control in

vaccinated hosts. (a) BMDC were cultured from B6 mice. After harvesting

and resting overnight, BMDC were treated overnight with 1.24 nmol amph-

CpG. CD103 expression on activated DCs was assessed by flow cytometry.

(b–g) Mice were vaccinated with BCG s.c. and rested for 4 weeks.

Vaccinated mice were infected with Mtb HN878 and treated with either

Ag85B-Z-DC, amph-CpG (1.24 nmol), FGK4.5 (100mg), or both amph-CpG

and FGK4.5 along with Ag85B peptide (5mg) on � 1 and 4 dpi. Mice were

collected at 8 dpi. (b) Lung bacterial burden was determined by plating.

Flow cytometry was used to assess (c) numbers of CD4þCD44hi

cells in the lungs, and (d) IL-17 and (e) IFN-g production by CD4þ T cells,

(f) MHC-II expression on alveolar macrophages and fold change MFI

relative to Vac was calculated. (g) Flow cytometry was used to calculate

numbers of CD11cþCD103þ cells in the lungs. (a) n¼4–5 technical

replicates±s.d., (b–g) n¼4–10 biological replicates. *Pr0.05, **Pr0.01,

***Pr0.001 by Student’s t-test (a) or one-way analysis of variance

(b–g). Dotted lines on bacterial burden plots represent the limit of detection

by plating.
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T cells isolated from Mtb-infected animals into newly infected
animals confers protective immunity40–44. Mtb is a successful
pathogen, known to inhibit MHC-II transactivator expression,
MHC-II expression and antigen presentation in APCs18. Thus,
the inability of TB vaccines to confer sterilizing immunity on Mtb
challenge may be associated with delayed CD4þ T-cell responses
due to delayed APC function, rather than just poor induction
of vaccine-induced CD4þ T cells. Accordingly, targeting DCs
in vaccinated hosts can substantially accelerate the activation
and accumulation of cytokine-producing CD4þ T-cell recall
responses in the lung, initiate rapid activation of alveolar
macrophages and limit Mtb growth. Interestingly, pre-clinical
vaccines that have come closest to inducing sterilizing immunity
following Mtb infection have been recombinant mycobacterial
vaccines delivered mucosally15,45. BCG is known to reduce the
overall childhood morbidity caused by infections other than
Mtb46, which could be due to the ability of BCG to induce ‘innate
memory’ by epigenetically altering the phenotype of infected
cells to one producing increased inflammatory cytokines, via
autophagy and nucleotide-binding oligomerization domain-
containing protein 2 (NOD2)-dependent pathways47,48. Thus, it
is possible that recombinant mycobacterial vaccines delivered
mucosally target pathways similar to DC transfer through
activation of lung-resident DCs and macrophages, thereby
driving earlier activation of lung-resident T cells on Mtb
challenge. Further work delineating the specific mechanisms by
which vaccine-induced immunity can be accelerated by targeting
these pathways will therefore be highly relevant.

Previous studies have attempted to improve DC function at the
time of vaccination by targeting the CD40 activation pathway49,
DC receptor Dec-205 (refs 50,51), or by utilizing cell-derived
vaccines, such as Mtb antigen-primed DCs31,32. Improving DC
function by targeting the CD40 pathway during vaccination had
no effect49, while activating Dec-205 at the time of vaccination
had a small effect (B0.5 log reduction) on vaccine-induced
protection on Mtb challenge50,51. Vaccination with antigen-
primed DCs has generated mixed results in Mtb-infected mice,
with a study demonstrating a negative impact of DC vaccination
due to exuberant inflammation31, or induction of vaccine-
induced protection similar to levels seen in BCG-vaccinated
hosts32. Our results show that use of Z-DCs as a mucosal
vaccination tool as boost to BCG vaccination has a small
protective effect on Mtb infection, but not as effective as use of
Z-DC transfer at the time of infection. In contrast, only very few
studies have therapeutically manipulated early innate responses
following Mtb infection. Delivery of polyI:C, a TLR3 ligand,
exacerbated inflammation and increased Mtb burden52. In
contrast, delivery of FimH, a TLR4 ligand, improved T-cell
responses and resulted in B1 log reduction in lung bacterial
burden, following high-dose intranasal infection with Mtb
H37Ra (ref. 53). To our knowledge, no published studies have
manipulated early host responses in vaccinated Mtb-infected
hosts, with resulting complete early Mtb control. Furthermore,
both CpG (reviewed in refs 54,55) and CD40 agonists (reviewed
in ref. 56) have been safely tested in clinical human trials,
predominantly for cancer treatment. Thus, repurposing these
host-directed therapeutics, as well as other activators of CD103þ

DC function57,58, for rapid activation of vaccine-induced T-cell
responses may thus be useful in development of novel drugs or
vaccination approaches for TB.

Our results show that while delivery of unstimulated DCs by
itself improves vaccine-induced CD4þ T-cell responses and Mtb
control in vaccinated hosts, zymosan activation of DCs, especially
generated from Il10� /� mice confers superior vaccine-induced
Mtb control. These results support the idea that delayed antigen
presentation and subsequent delayed induction of vaccine-

induced T-cell activation is a major bottleneck for TB vaccine
efficacy. In addition, these results support an important role for
IL-10 in limiting TB vaccine efficacy and early Mtb control in
vaccinated hosts28,29. Furthermore, Z-DC transfer works in both
standard BCG vaccinated as well as in mucosally vaccinated
Mtb-infected hosts, the route of vaccination may define the
mechanisms of protection. In mucosally vaccinated Mtb-infected
mice receiving DC transfer, mucosal lung-resident CD4þ T cells,
primarily IL-17-producing cells are activated and accumulate
rapidly in the lung, thus mediating the superior protection
associated with this model. In BCG-vaccinated Mtb-infected mice
receiving DC transfer, DC transfer can still prime a population of
lung-resident IL-17-producing vaccine-induced CD4þ T cells,
but likely DC migration to LNs is required to mobilize IFN-g-
producing vaccine-induced CD4þ T-cell responses from the
systemic pool, to provide enhanced Mtb control. Regardless, that
we can target CD103þ DCs and the CD40 activation pathway to
limit Mtb growth in standard BCG-vaccinated Mtb-infected hosts
suggest that our strategy is effective in overcoming a bottleneck
associated with delayed induction of vaccine-induced CD4þ

T-cell responses in vaccinated hosts. This is further supported by
our results showing that DC transfer can protect vaccinated hosts
on challenge with Mtb strains belonging to different lineages,
suggesting that T-cell bottleneck for TB vaccines is universal. In
addition, that Z-DC transfer into unvaccinated hosts can also
accelerate naive T-cell priming and improve primary immunity,
albeit not to the effectiveness seen in vaccinated hosts, suggest the
DC transfer may be useful to enhance both primary and vaccine-
induced pathways during Mtb infection.

DC transfer not only induces the rapid activation of vaccine-
induced CD4þ T-cell responses in vaccinated Mtb-infected mice,
but also has substantial downstream effects on activation of
myeloid pathways in the lung. First, lung alveolar macrophages
are rapidly activated in vaccinated hosts by 8 dpi, an event that
does not happen until 14 dpi in vaccinated hosts and until
21 dpi in unvaccinated hosts3. Accordingly, the early global
transcriptional changes in the lungs of vaccinated Mtb-infected
mice receiving DC transfer mirror the transcriptional changes
occurring in 21 dpi Mtb-infected lungs33. Furthermore, we
observe early accumulation of myeloid DCs, including CD103þ

DCs and an enhancement of DC activation pathways, in
particular genes associated with CD40 activation in the lungs of
vaccinated Mtb-infected mice. CD103þ DCs are a tissue-resident
DC subset, which have primarily been implicated in cross-
presentation and induction of CD8þ T-cell responses59,60. More
recently, however, CD103þ DCs have been shown to induce
CD4þ T cells34,35,61. In the lung, CD103þ DCs represent a
migratory DC subset, with the ability to migrate from the lungs to
the LN and back again62, and induce both Th1 and Th17
cytokines by CD4þ T cells34,35,63. Although antigen presentation
by transferred DCs likely directly activates vaccine-induced
CD4þ T-cell responses, rapid activation of CD4þ T-cell
responses also modifies the lung micro-environment to improve
subsequent antigen presentation by endogenous host APCs. We
show here that targeting DC activation pathways through the
TLR ligand amph-CpG, along with use of the CD40 agonist
FGK4.5, similarly control Mtb growth. Treatment of DCs with
granulocyte–macrophage-colony-stimulating factor (GM-CSF), a
by-product of TLR9 stimulation through CpG64 has previously
been shown to upregulate CD103 expression65. Thus, it is
possible that CpG stimulates CD103þ expression on DCs
indirectly through inducing GM-CSF by other lung-resident
cells. Upregulation of CD103 as well as recruitment of CD103þ

DCs to the lung alone, however, are not sufficient for improved
T-cell activation, suggesting that the activating signal delivered
through the CD40 agonist FGK4.5 provides the second signal
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required for improved early antigen presentation to vaccine-
induced CD4þ T cells. Therefore, Mtb-infected individuals likely
have a population of antigen-responsive T cells, and targeting
DCs as a potential therapy, may provide the lung-resident T cells
the necessary signals to proliferate and control Mtb infection.

Thus, our data for the first time show that delayed activation of
vaccine-induced T-cell responses is a critical bottleneck for TB
vaccine efficacy. Our results demonstrate that this delay can be
overcome by DC transfer, or by targeting DC activation, leading
to rapid T-cell recall responses and enhanced alveolar macro-
phage activation, resulting in complete control of early Mtb
growth. These results provide a roadmap for the type of immune
responses that a sterilizing TB vaccine should induce, represent-
ing an important milestone in our mechanistic understanding of
TB vaccine-mediated immune responses. Our results suggest
that despite induction of effective Mtb-specific vaccine T-cell
responses by modern TB vaccines66–68, delayed T-cell vaccine
responses on Mtb infection may pose a significant hurdle to
development of a sterilizing vaccine for TB in humans. Therefore,
it is possible that the development of a sterilizing vaccine for
TB may not be a realistic goal. Instead, redirecting our efforts
towards developing novel vaccine strategies and therapeutics for
preventing the reactivation of latent TB and TB transmission may
benefit global control of TB.

Methods
Mice. C57BL/6 (B6), B6.129P2-Il10tm1Cgn/J (Il10� /� ) and B6.129 (Cg)-
Foxp3tm3(DTR/GFP)Ayr/J (Foxp3.DTR) mice were purchased from Jackson
Laboratories (Bar Harbor, ME, USA) and bred at Washington University in
St Louis. C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J (P25 TCR Tg) and B6.PL-
Thy1a/CyJ (Thy1.1) mice were purchased from Jackson Laboratories, and crossed
and bred at Washington University in St Louis. Mice (male and female) were used
at 6–8 weeks of age. Experiments were designed according to empirical statistical
power analysis. All mice were used and housed in accordance with the National
Institute of Health guidelines for housing and care of laboratory animals, and
permission for the experiments in this study was granted by the Washington
University in St Louis Institutional Animal Care and Use Committee under
protocol 20130195. All efforts were made to minimize pain and suffering as
described in this protocol.

Bacterial infection and vaccination. M. bovis Bacille Calmette–Guerin (BCG
Pasteur, Source: Trudeau institute), Mtb strain HN878 (Source: BEI Resources) and
Mtb strain H37Rv (Source: Trudeau Institute) were grown to mid-log phase in
Proskauer Beck medium containing 0.05% Tween80 and frozen in 1 ml aliquots
at � 80 �C.

Mice were vaccinated with 1� 106 c.f.u. BCG s.c.4 and 4 weeks later received
133mg Ag85B240–254 peptide (New England Peptide, Gardner, MA, USA) along
with 1 mg heat-labile enterotoxin (LT-IIb) intranasally in 20 ml (10 ml per nare).
In some experiments, mice only received mucosal vaccination with three doses, 2
weeks apart of 133 mg Ag85B240–254 peptide in 1 mg LT-IIb intranasally. In other
experiments, mice only received 1� 106 c.f.u. BCG s.c. as a model of parenteral
vaccination. Four or 10 weeks after the final vaccination, mice were infected
with 100 c.f.u. (low dose) or 1,000 c.f.u. (high dose) Mtb HN878 via aerosol using
a Glas-Col aerosol exposure system (Glas-Col, Terre Haute, IN, USA)4. At given
time points following infection, organs were collected, homogenized and tissue
homogenates plated in serial dilutions on 7H11 agar (BD Biosciences, San Jose, CA,
USA) to assess bacterial burden4.

In experiments using Foxp3.DTR mice, mice were treated with three doses 2
days apart of 10 mg kg� 1 diphtheria toxin (Millipore, Billerica, MA, USA)69 for
depletion of Foxp3þ cells, starting 8 dpi.

In vitro culture of DCs and macrophages. BMDC and bone marrow-derived
macrophages (BMDMs) were generated from B6 or Il10� /� mice. Cells were
isolated from the femur and tibia, and cultured at 1� 106 cells ml� 1 in 10 ml
complete DMEM (cDMEM) supplemented with 20 ng ml� 1 recombinant mouse
GM-CSF (Peprotech, Rocky Hill, NJ, USA) for 3 days at 37 �C in 7.5% CO2, at
which point, an additional 10 ml cDMEM supplemented with 20 ng ml� 1

recombinant mouse GM-CSF was added. Non-adherent cells (BMDCs) were
collected on the seventh day of culture, and counted and plated at 2� 106

cells ml� 1 in cDMEM. Adherent BMDMs were collected at the same time by
scraping and cultured at 1� 106 cells ml� 1. For BMDC stimulation, Ag85B240–254

peptide (20 mg ml� 1) and Zymosan (Invivogen, San Diego, CA) was added at
25mg ml� 1. Cells were stimulated for 16 h before being collected, washed, counted
and instilled i.t. into mice at 1� 106 cells in 50ml on the day before infection and 4

dpi. Supernatants from stimulated in vitro cultures were collected and frozen at
� 80 �C for analysis by enzyme-linked immunosorbent assay and multiplex assay.
In some experiments, BMDCs were treated with 1.24 nmol amph-CpG.

Amph-CpG and FGK4.5 treatment of mice. Amph-CpG was prepared as
described previously36. Briefly, solid phase DNA synthesis and 50 lipophilic
conjugation were carried out using an ABI 394 synthesizer36. The sequence used
was murine oligodeoxynucleotides (ODN) class B sequence 1,826 with two guanine
spacers: 50-diacyl lipid-*G*G*T*C*C*A*T*G*A*C*G*T*T*C*C*T*G*A*C*G*T*
T-30 . Amph-CpG was delivered to mice in 50 ml i.t. at 1.24 nmol per mouse. The
CD40 agonist FGK4.5 (R&D Systems, Minneapolis, MN, USA) was delivered in
50 ml i.t. at 100 mg per mouse. Both treatments were delivered with 5 mg Ag85B
peptide.

Antibody treatment of mice. In some experiments, mice were treated with CD4
(clone GK1.5, BioXcell) depleting antibodies delivered intraperitoneally, starting on
the day of Mtb infection and 7 days later (300 mg per mouse).

Generation of single-cell suspensions from tissues. Lung single-cell suspen-
sions from vaccinated or Mtb-infected mice were generated as before4. For LNs and
spleens, organs were passed through a 70 mm cell strainer and then processed as for
lungs4. For flow cytometric analysis, cells were either stained immediately, or
stimulated for 18 h in the presence of Ag85B240–254 peptide, with GolgiStop
(5 ml ml� 1; BD Biosciences) and Brefeldin A (1 mg ml� 1; BioLegend, San Diego,
CA, USA) added for the last 5 h. Intracellular cytokine staining was performed
using the BD Cytofix/Cytoperm kit (BD Biosciences). Cells were collected using a
BD FACS Jazz or a BD LSR Fortessa, and analysis was performed using FlowJo
(Treestar, Ashland, OR, USA). Antibodies used include anti-mouse CD11c
(clone HL3; BD Biosciences; dilution: 1/200), anti-mouse MHC-II (clone
M5/114.15.2; Tonbo Biosciences, San Diego, CA, USA; dilution: 1/150),
anti-mouse CD3 (clone 500A2; BD Biosciences; dilution: 1/200), anti-mouse CD4
(clone RM4-5; BD Biosciences, dilution: 1/200), anti-mouse CD44 (clone IM7;
eBioscience, dilution: 1/400), anti-mouse IL-17 (clone TC11-18H10; BD
Biosciences, dilution: 1/100), anti-mouse IFN-g (XMG1.2; BD Biosciences;
dilution: 1/100), anti-mouse Thy1.1 (clone OX-7; BD Biosciences; dilution:
1/100) and anti-mouse CD103 (clone 2E7, eBioscience; dilution: 1/200).

ELISpot. For analysis of production of antigen-specific cytokines by enzyme-
linked immunospot (ELISpot) assay as before4, 96-well ELISpot plates were coated
with monoclonal anti-mouse IL-17 antibody (clone 50101.111; R&D systems,
Minneapolis, MN, USA) or anti-mouse IFN-g antibody (clone R4-6A2;
eBioscience) overnight, then blocked with media containing 10% fetal bovine
serum. Total cells from lungs, or 5� 105 cells from LN were plated in the top well
and subsequently diluted twofold in serial dilutions. Irradiated B6 splenocytes were
used as APCs at a concentration of 1� 106 cells per well in the presence of
10 mg ml� 1 peptide and 10 U ml� 1 IL-2. After 24 h, plates were washed and
probed with biotinylated anti-mouse IL-17 antibody (clone eBio17B7; eBioscience)
or biotinylated anti-mouse IFN-g antibody (clone XMG1.2; eBioscience), and
binding detected using streptavidin–alkaline phosphatase (Vector Laboratories,
Burlingame, CA, USA) with BCIP/NBT (Sigma Aldrich) as the substrate. Spots
were visualized and enumerated using a CTL-Immunospot S5 MicroAnalyzer
(C.T.L., Shaker Heights, OH, USA).

Cell proliferation and mycobacterial killing assays. CD4þ T cells were isolated
from single-cell suspensions generated from LNs and spleen from Ag85B TCR Tg
mice on a Thy1.1 background using a CD4 L3T4 positive selection kit according to
the manufacturer’s instructions (Miltenyi Biotec Inc, San Diego, CA, USA). Naive
CD4þ T cells (Th0) were intravenously transferred into B6 mice (on a Thy1.2
background) at 2� 106 cells per mouse. For assessment of proliferation ex vivo,
whole lung cells isolated from mice receiving adoptively transferred T cells were
labelled with 1 mM carboxyfluorescein succyinimidyl ester (CFSE, Invitrogen,
Thermo Fisher) for 15 min at 37 �C at 1� 107 cells ml� 1 in incomplete DMEM3.
Cells were then cultured for 3 or 6 days with Il10� /� BMDC stimulated overnight
with zymosan alone (25 mg ml� 1) or zymosan (25 mg ml� 1)þAg85B240–254

peptide (20 mg ml� 1) in the presence or absence of Mtb HN878. Supernatants were
collected and frozen at � 80 �C. Cells were collected and T-cell proliferation was
assessed by measuring carboxyfluorescein succyinimidyl ester dilution by flow
cytometry. Transferred antigen-specific cells were tracked in vivo using Thy1.1
staining. Cell activation was measured by CD44 staining.

For the mycobacterial killing assay, BMDMs were infected overnight with Mtb
HN878 at an multiplicity of infection of 1 in antibiotic-free cDMEM. The following
day, infected BMDMs were co-cultured for 6 days at a 1:1 ratio with T cells
previously activated with Ag85B-Z-DC as described above. Intracellular Mtb c.f.u.
was assessed by lysing the BMDMs with 0.05% SDS before plating on 7H11 plates
in serial dilutions.

Cytokine and chemokine production. Cytokine and chemokine production in
supernatants collected from stimulated BMDC or from T-cell-BMDC cultures was
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analysed using Milliplex Multiplex Assays (Millipore), using the protocol specified
by the manufacturer. IL-10 (R&D; cat. no: DY417), IL-23 (R&D; cat. no: DY1887)
and IL-6 (R&D; cat. no: DY406) were measured using a Duoset kit (R&D Systems),
using the protocol specified by the manufacturer. IL-1b (BD; cat. no: 559603)
was measured using an BD OptEIA IL-1b ELISA Set (BD Biosciences) using the
protocol specified by the manufacturer.

Immunofluorescence staining. Lung lobes were perfused with 10% formalin,
fixed and paraffin embedded. For immunofluorescent staining, lung sections were
cut, immersed in xylene to remove paraffin and then hydrated in 96% alcohol and
phosphate-buffered saline. Antigens were unmasked with a DakoCytomation
Target Retrieval Solution (Dako, Carpinteria, CA, USA), and non-specific binding
was blocked with 5% (v/v) normal donkey serum and Fc block (BD Pharmingen).
Endogenous biotin was neutralized by adding avidin, followed by incubation with
biotin (Sigma Aldrich). Sections were probed with anti-B220 to detect B cells (clone
RA3-6B2, BD Pharmingen; dilution: 1/100) and anti-CD3 to detect T cells (clone
M-20, Santa Cruz Biotechnology, Santa Cruz, CA; dilution: 1/100). For analysis of
B-cell follicles, follicles were outlined with the automated tool of the Zeiss Axioplan
2 microscope (Zeiss, Thornwood, NY, USA), and total area and average size was
calculated in squared microns.

Quantitative PCR with reverse transcription. Total RNA was isolated from
lung tissue using an RNeasy RNA isolation kit (Qiagen, Valencia, CA, USA).
Complementary DNA was generated using ABI reverse transcription reagents
(ABI, Thermo Fisher) on a BioRad DNA Engine Thermal Cycler (BioRad,
Hercules, CA, USA). Gene expression was assessed using primers from integrated
DNA technologies (IDT) (iNOS (F-CAGCTGGGCTGTACAAACCTTC;
R-CATTGGAAGTGAAGCGTTTCG;PROBE50-/56-FAM/CGG GCA GCC TGT
GAG ACC TTT GA/3BHQ_1/-30);GAPDH (F-CTCGTCCCGTAGACAAAATGG;
R-AATCTCCACTTTGCCACTGCA; PROBE50-/56-FAM/CGG ATT TGG CCG
TAT TGG GCG/3BHQ_1/-30)) (Coralville, IA, USA) and ABI (CCL19:
Mm00839967_g1; Saa3: Mm00441203-ml; Lcn2: Mm01324472_g1;Batf3:
Mm01318274_m1; Itgae: Mm00434443_m1; Col1a1: Mm00801666_g1) and run
on a Viia7 Real-Time PCR system (Life Technologies, Thermo Fisher). Expression
of genes of interest was normalized to GAPDH expression, and log 10-fold
induction over the control group was assessed using the DDCT calculation.

RNA-seq and gene set enrichment analysis. Total RNA was isolated from lung
tissue using an RNeasy RNA isolation kit (Qiagen, Valencia, CA, USA). Each
sample was assessed using Qubit 2.0 fluorometer (Invitrogen, Thermo Fisher) and
Agilent Tapestation 2200 (Agilent Technologies, Santa Clara, CA, USA). Sequen-
cing libraries were generated using Illumina TruSeq RNA Access library prep kit
(Illumina, San Diego, CA, USA) following the manufacturer’s protocol. Cluster
generation and 75 bp single read single-indexed sequencing was performed on
Illumina NextSeq 500 (Illumina). Sequencing analysis was done using mRNA-seq
Analysis on Maverix Analytic Platform (Maverix Biomics, Inc, San Mateo, CA).
Raw sequencing reads from Illumina sequencing platform that was converted into
FASTQ file format were quality checked for potential sequencing issues and con-
taminants using FastQC. Adapter sequences, primers, Ns and reads with quality
score o28 were trimmed using fastq-mcf of ea-utils and Trimmomatic. Reads with
a remaining length of fewer than 20 bp after trimming were discarded. Single reads
were mapped to the mouse genome (m10) using STAR in a strand specific manner.
Cufflinks was used to determine fragments per kilobase of transcript per million
mapped reads (FPKM) levels for each gene from the STAR alignment and was used
as input for Cuffdiff. Pairwise differential expression was quantified using Cuffdiff.
Read counts were then normalized across all samples and significant differentially
expressed genes were determined by adjusted P value with a threshold of 0.05. For
Gene Set Enrichment Analysis we have selected expressed genes from GSE11005
(top 10,000 based on average expression level). We then assembled ranked list
using signed statistics values and performed pre-ranked GSEA using top 100
vaccine upregulated genes as a query gene set. The data shown is uncorrected for
multiple comparisons. We also performed differential expression analysis using
Limma between wild type and Cd40l� /� groups at day 32 post-
P. murina infection.

Statistical analysis. Statistical analyses were performed using GraphPad Prism
(La Jolla, CA, USA). For experiments with two groups, two-tailed Student’s t-tests
or Mann–Whitney test were performed. For two or more groups, a one-way
analysis of variance or Kruskall–Wallis test was used. For multiple groups with
multiple time points, a two-way analysis of variance was used. All plots show
mean±s.d.

Data availability. Sequence data that support the findings of this study have been
deposited in BioProject with the primary accession code SRP091809. Other data
that support the findings of this study are available from the corresponding author
upon request.
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