230 research outputs found

    Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA

    Get PDF
    HGF (hepatocyte growth factor) is a pleiotropic cytokine homologous to the serine protease zymogen plasminogen that requires canonical proteolytic cleavage to gain functional activity. The activating proteases are key components of its regulation, but controversy surrounds their identity. Using quantitative analysis we found no evidence for activation by uPA (urokinase plasminogen activator), despite reports that this is a principal activator of pro-HGF. This was unaffected by a wide range of experimental conditions, including the use of various molecular forms of both HGF and uPA, and the presence of uPAR (uPA receptor) or heparin. In contrast the catalytic domains of the TTSPs (type-II transmembrane serine proteases) matriptase and hepsin were highly efficient activators (50% activation at 0.1 and 3.4 nM respectively), at least four orders of magnitude more efficient than uPA. PS-SCL (positional-scanning synthetic combinatorial peptide libraries) were used to identify consensus sequences for the TTSPs, which in the case of hepsin corresponded to the pro-HGF activation sequence, demonstrating a high specificity for this reaction. Both TTSPs were also found to be efficient activators at the cell surface. Activation of pro-HGF by PC3 prostate carcinoma cells was abolished by both protease inhibition and matriptase-targeting siRNA (small interfering RNA), and scattering of MDCK (Madin–Darby canine kidney) cells in the presence of pro-HGF was abolished by inhibition of matriptase. Hepsin-transfected HEK (human embryonic kidney)-293 cells also activated pro-HGF. These observations demonstrate that, in contrast with the uPA/uPAR system, the TTSPs matriptase and hepsin are direct pericellular activators of pro-HGF, and that together these proteins may form a pathway contributing to their involvement in pathological situations, including cancer

    Metal-Insulator Transition in the Two-Dimensional Hubbard Model at Half-Filling with Lifetime Effects within the Moment Approach

    Full text link
    We explore the effect of the imaginary part of the self-energy, ImΣ(k,ω)Im\Sigma(\vec{k},\omega), having a single pole, Ω(k,ω)\Omega(\vec{k},\omega), with spectral weight, α(k)\alpha(\vec{k}), and quasi-particle lifetime, Γ(k)\Gamma(\vec{k}), on the density of states. We solve the set of parameters, Ω(k,ω\Omega(\vec{k},\omega), α(k)\alpha(\vec{k}), and Γ(k)\Gamma(\vec{k}) by means of the moment approach (exact sum rules) of Nolting. Our choice for Σ(k,ω)\Sigma(k,\omega), satisfies the Kramers - Kronig relationship automatically. Due to our choice of the self - energy, the system is not a Fermi liquid for any value of the interaction, a result which is also true in the moment approach of Nolting without lifetime effects. By increasing the value of the local interaction, U/WU/W, at half-filling (ρ=1/2\rho = 1/2), we go from a paramagnetic metal to a paramagnetic insulator, (Mott metal - insulator transition (MMITMMIT)) for values of U/WU/W of the order of U/W1U/W \geq 1 (WW is the band width) which is in agreement with numerical results for finite lattices and for infinity dimensions (D=D = \infty). These results settle down the main weakness of the spherical approximation of Nolting: a finite gap for any finite value of the interaction, i.e., an insulator for any finite value of U/WU/W. Lifetime effects are absolutely indispensable. Our scheme works better than the one of improving the narrowing band factor, B(k)B(\vec{k}), beyond the spherical approximation of Nolting.Comment: 5 pages and 5 ps figures (included

    Excess of heme induces tissue factor-dependent activation of coagulation in mice

    Get PDF
    An excess of free heme is present in the blood during many types of hemolytic anemia. This has been linked to organ damage caused by heme-mediated oxidative stress and vascular inflammation. We investigated the mechanism of heme-induced coagulation activation in vivo. Heme caused coagulation activation in wild-type mice that was attenuated by an anti-tissue factor antibody and in mice expressing low levels of tissue factor. In contrast, neither factor XI deletion nor inhibition of factor XIIa-mediated factor XI activation reduced heme-induced coagulation activation, suggesting that the intrinsic coagulation pathway is not involved. We investigated the source of tissue factor in heme-induced coagulation activation. Heme increased the procoagulant activity of mouse macrophages and human PBMCs. Tissue factor-positive staining was observed on leukocytes isolated from the blood of heme-treated mice but not on endothelial cells in the lungs. Furthermore, heme increased vascular permeability in the mouse lungs, kidney and heart. Deletion of tissue factor from either myeloid cells, hematopoietic or endothelial cells, or inhibition of tissue factor expressed by non-hematopoietic cells did not reduce heme-induced coagulation activation. However, heme-induced activation of coagulation was abolished when both non-hematopoietic and hematopoietic cell tissue factor was inhibited. Finally, we demonstrated that coagulation activation was partially attenuated in sickle cell mice treated with recombinant hemopexin to neutralize free heme. Our results indicate that heme promotes tissue factor-dependent coagulation activation and induces tissue factor expression on leukocytes in vivo. We also demonstrated that free heme may contribute to thrombin generation in a mouse model of sickle cell disease

    Myeloid Cell Tissue Factor Does Not Contribute to Venous Thrombogenesis in an Electolytic Injury Model

    Get PDF
    Tissue factor (TF) is a potent initiator of the extrinsic coagulation cascade. The role and source of TF in venous thrombotic disease is not clearly defined. Our study objective was to identify the contribution of myeloid cell TF to venous thrombogenesis in mice

    A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance

    Get PDF
    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes

    Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets

    Get PDF
    Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin-like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver. Bacteria triggered but did not maintain this process, as thrombosis peaked at times when bacteremia was absent and bacteria in tissues were reduced by more than 90% from their peak levels. Thrombus development was triggered by an innate, TLR4-dependent inflammatory cascade that was independent of classical glycoprotein VI-mediated (GPVI-mediated) platelet activation. After infection, IFN-ã release enhanced the number of podoplanin-expressing monocytes and Kupffer cells in the hepatic parenchyma and perivascular sites and absence of TLR4, IFN-ã, or depletion of monocytic-lineage cells or CLEC-2 on platelets markedly inhibited the process. Together, our data indicate that infection-driven thrombosis follows local inflammation and upregulation of podoplanin and platelet activation. The identification of this pathway offers potential therapeutic opportunities to control the devastating consequences of infection-driven thrombosis without increasing the risk of bleeding

    Ontogeny vs. phylogeny in Primate/Canid comparisons: a meta-analysis of the object choice task

    Get PDF
    The Object Choice Task (OCT) is a widely used paradigm with which researchers measure the ability of a subject to comprehend deictic (directional) cues, such as pointing gestures and eye gaze. There is a widespread belief that nonhuman primates evince only a weak capacity to use deictic cues; in contrast, domestic dogs (Canis familiaris) tend to demonstrate high success rates. This pattern of canid superiority has been taken to support the Domestication Hypothesis, which posits enhancing effects of artificial selection on the sociocognitive abilities of dogs and humans. Here we review nearly two decades of published findings, using variants of the OCT. We find systematic confounds with species classification in task-relevant preparation of the subjects, in the imposition of a barrier between reward and subject, and in the specific deictic cues used to indicate the location of hidden objects. Thus, the widespread belief that dogs outperform primates on OCTs is undermined by the systematic procedural differences in the assessments of these skills, differences that are confounded with taxonomic classification

    PAR-1 contributes to the innate immune response during viral infection

    Get PDF
    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection
    corecore