85 research outputs found

    Современные подходы к фармакотерапии ревматоидного артрита

    Get PDF
    АРТРИТ РЕВМАТОИДНЫЙ /ЛЕК ТЕРАРТРИТ ИНФЕКЦИОННЫЙ НЕСПЕЦИФИЧЕСКИЙ /ЛЕК ТЕРПОЛИАРТРИТ РЕВМАТОИДНЫЙ /ЛЕК ТЕРЛЕКАРСТВЕННАЯ ТЕРАПИЯФАРМАКОТЕРАПИЯПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА /ТЕР ПРИ

    Дисфункция эндотелия при хронической гастродуоденальной патологии у детей

    Get PDF
    ЭНДОТЕЛИЙ /ПОВРЕЖДЭПИТЕЛИЙ /ПОВРЕЖДЖЕЛУДОЧНО-КИШЕЧНЫЕ БОЛЕЗНИПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ БОЛЕЗНИГАСТРИТДУОДЕНИТДЕТЕЙ ОХРАНЫ ЗДОРОВЬЯ СЛУЖБ

    Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow

    Get PDF
    Despite more attention to cell migration from circulation into the bone marrow (BM), particularly homing of haematopoietic stem/progenitor cells, the process and mechanisms of cell mobilisation from the BM into the circulation remain largely underexplored. The process of cell mobilisation or transcellular cell migration from BM into the circulation (cell egress) is a crucial biological process in mammals as it is important to maintain homeostasis of various physiological functions including, but not limited to, the immune system, erythropoiesis, platelet release, and stem cell migration. The BM microvascular system composes of a monolayer of specialized endothelial cells, called sinusoidal endothelial cells (SECs). While it is very well evident that the process of cell egress occurs exclusively through BM SECs, there is a lack of systematic analyses addressing the extent of contribution of BM SECs to the process of cell egress from the BM. Therefore, this review aims to address the potential ability of BM SECs in regulating and/or facilitating the process of cell egress from BM. In this review, we address, firstly, the unique ultra-/structural and molecular features of BM SECs and discuss the possible biological interactions between BM SECs and various egressing cells in physiological conditions. Secondly, we propose the potential role of BM SECs in egress of leukemic cells from BM into the circulation. Finally, we discuss the potential role of BM SECs in homing of haematopoietic stem cells. Collectively, the current review suggests that the BM SECs may not be merely a neutral gatekeeper for cell intravasation and extravasation, but rather is a dynamic trafficking surveillance system, thereby the process of BM cell egress/mobilisation can be regulated

    Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow

    Get PDF
    Despite more attention to cell migration from circulation into the bone marrow (BM), particularly homing of haematopoietic stem/progenitor cells, the process and mechanisms of cell mobilisation from the BM into the circulation remain largely underexplored. The process of cell mobilisation or transcellular cell migration from BM into the circulation (cell egress) is a crucial biological process in mammals as it is important to maintain homeostasis of various physiological functions including, but not limited to, the immune system, erythropoiesis, platelet release, and stem cell migration. The BM microvascular system composes of a monolayer of specialized endothelial cells, called sinusoidal endothelial cells (SECs). While it is very well evident that the process of cell egress occurs exclusively through BM SECs, there is a lack of systematic analyses addressing the extent of contribution of BM SECs to the process of cell egress from the BM. Therefore, this review aims to address the potential ability of BM SECs in regulating and/or facilitating the process of cell egress from BM. In this review, we address, firstly, the unique ultra-/structural and molecular features of BM SECs and discuss the possible biological interactions between BM SECs and various egressing cells in physiological conditions. Secondly, we propose the potential role of BM SECs in egress of leukemic cells from BM into the circulation. Finally, we discuss the potential role of BM SECs in homing of haematopoietic stem cells. Collectively, the current review suggests that the BM SECs may not be merely a neutral gatekeeper for cell intravasation and extravasation, but rather is a dynamic trafficking surveillance system, thereby the process of BM cell egress/mobilisation can be regulated

    Three-dimensional finite element analysis of GaPO4/Pt surface acoustic wave resonator based on cell model.

    Get PDF
    This paper present a three-dimensional finite element method for the one-port surface acoustic wave resonator base on GaPO4 with 5° cut for high frequency application. Interdigital transducer is assumed a thin film platinum with chromium as an under-layer material. The simulated frequency response and wave propagation are obtained under base cell model at 433.92 MHz centre frequency under ISM band. Frequency responses versus impedance are compared and verify with the known result in literature. The results show that the total displacements are vanished at a distance of about 2 to 3 wavelength from the surface. As expected, the X and Y displacement are 90°out-of-phase with each other. It is observed that the mass loading effect is suitable for prediction of resonant frequency. It is Q found that the factor value is larger than 1000 and the mode shapes for resonant and anti-resonant condition are different at two edges of stop-ban

    Genital ulcer severity score and genital health quality of life in Behçet's disease

    Get PDF
    Background: Behçet's Disease (BD) is a chronic auto-inflammatory, multisystem relapsing/remitting disorder of unknown aetiology. Oro-genital ulceration is a key feature of the disease and has a major impact on the patients' quality of life. Other clinical manifestations include ocular inflammation, rheumatologic and skin involvement, while CNS and vascular complications can lead to considerable morbidity. The availability of a valid monitoring tool for BD activity is crucial in evaluating the impact of the disease on daily life activity. The aims of this study were to validate a novel tool for monitoring genital ulceration severity in BD and to assess the impact of genital ulcers on the Genital Health Quality of Life (GHQoL). Methods: Genital Ulcer Severity Score (GUSS) was developed using six genital ulcer characteristics: number, size, duration, ulcer-free period, pain and site. A total of 207 BD patients were examined, (137 females: mean age∈±∈SD: 39.83∈±∈13.42 and 70 males: mean age∈±∈SD: 39.98∈±∈11.95) from the multidisciplinary Behçet's Centre of Excellence at Barts Health NHS Trust. GUSS was used in conjunction with Behçet's Disease Current Activity Form (BDCAF). Results: The over-all score of GUSS showed a strong correlation with all genital ulcer characteristics, and the strongest correlation was with the pain domain (r∈=∈0.936; P∈2: 0.600; P∈<∈0.0001). Conclusions: This study established the practicality of GUSS as a severity monitoring tool for BD genital ulcers and validated its use in 207 patients. Genital ulcers of BD have a considerable impact on the patients GHQoL

    Expression of GNA and biting site-restricted cry1Ac in cotton; an efficient attribution to insect pest management strategies

    No full text
    Insect-resistant transgenic cotton has been commercialized for two decades. Most of the introduced cultivars express Bt gene(s) constitutively under the control of 35S promoter in whole-plant tissues. However, there have been other promoters considered by researchers to confine the toxin expression to targeted organ and tissues. We developed a triple-gene construct including GNA, cry1Ac and cp4 epsps genes. We attempted to confine cry1Ac expression to insect biting sites by cloning it to downstream of a wound-inducible promoter isolated from Asparagus officinalis (AoPR1). Moreover, to broaden the range of resistance, GNA was driven by the 35S promoter to target the sap-sucking insects like aphids which impose large losses in cotton production. To select the transformants in selection medium and for glyphosate tolerance, GNA and cry1Ac genes were accompanied with cp4 epsps gene. Two binary vectors harboring desired genes were constructed and utilized in the study (pGTGNAoC1AC and pGTGN35C1AC). Transformation of cultivar GSN-12 was carried out by employing Agrobacterium tumefaciens strain EHA105. Plantlets were primarily screened under glyphosate (N-phosphonomethyl glycine) selection pressure and subsequently subjected to molecular and biotoxicity assays. Introduction of cry1Ac and GNA to cotton plant conferred resistance to Spodoptera littoralis and Aphis gossypii Glover. Restriction of cry1Ac toxin protein to insect biting sites along with a plant lectin attributes significantly to insect pest management strategies. © 2018, Korean Society for Plant Biotechnology and Springer Japan KK, part of Springer Nature.Acknowledgements The PhD. fellowship awarded by The Scientific and Technological Research Council of Turkey (TUBITAK)-BIDEB to Dr. S.D. Khabbazi is deeply appreciated. The authors are grateful to the Leicester University (UK) for giving permission to use AoPR1 promoter for research purposes, Dr. Selma Onarıcı (TÜBİTAK GMBE) for providing pJIT61.cry1Ac plasmid and Prof. Umut Toprak (Department of Crop Protection, Ankara University) for providing S. littoralis larvae
    corecore