206 research outputs found

    Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation

    Get PDF
    Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation-emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode (LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake rate Ki parametric images were generated with the standard Patlak method. Our results demonstrate significant improvement in contrast-to-noise ratio (CNR) and noise-bias performance in both dynamic and parametric images. The proposed nested RL-3D-MCIR method is implemented on the Software for Tomographic Image Reconstruction (STIR) open-source platform and is scheduled for public release

    Generalized 3D and 4D motion compensated whole-body PET image reconstruction employing nested em deconvolution

    Get PDF
    Whole-body dynamic and parametric PET imaging has recently gained increased interest as a clinically feasible truly quantitative imaging solution for enhanced tumor detectability and treatment response monitoring in oncology. However, in comparison to static scans, dynamic PET acquisitions are longer, especially when extended to large axial field-of-view whole-body imaging, increasing the probability of voluntary (bulk) body motion. In this study we propose a generalized and novel motion-compensated PET image reconstruction (MCIR) framework to recover resolution from realistic motion-contaminated static (3D), dynamic (4D) and parametric PET images even without the need for gated acquisitions. The proposed algorithm has been designed for both single-bed and whole-body static and dynamic PET scans. It has been implemented in fully 3D space on STIR open-source platform by utilizing the concept of optimization transfer to efficiently compensate for motion at each tomographic expectation-maximization (EM) update through a nested Richardson-Lucy EM iterative deconvolution algorithm. The performance of the method, referred as nested RL-MCIR reconstruction, was evaluated on realistic 4D simulated anthropomorphic digital XCAT phantom data acquired with a clinically feasible whole-body dynamic PET protocol and contaminated with measured non-rigid motion from MRI scans of real human volunteers at multiple dynamic frames. Furthermore, in order to assess the impact of our method in whole-body PET parametric imaging, the reconstructed motion-corrected dynamic PET images were fitted with a multi-bed Patlak graphical analysis method to produce metabolic uptake rate (Ki parameter in Patlak model) images of highly quantitative value. Our quantitative Contrast-to-Noise (CNR) and noise vs. bias trade-off analysis results suggest considerable resolution enhancement in both dynamic and parametric motion-degraded whole-body PET images after applying nested RL-MCIR method, without amplification of noise

    Gas Geochemistry and Fractionation Processes in Florina Basin, Greece

    Get PDF
    Florina Basin is located in northern Greece, close to Mount Voras where the volcanic activity of Late Messinian age began. In the area, many CO2-rich gas emissions are present as a bubbling free-phase in groundwater (both springs and wells) and soil gases. Volcanism along with the geological and geodynamic regime of the basin, created the ideal conditions for CO2 accumulation in vertically stacked reservoirs. One of these, industrially exploited by the company Air Liquide Greece, produces 30,000 t/a of CO2. Results show that CO2 concentrations in the gases of Florina can arrive up to 99.8% and are mostly above 90%. Moreover, C-isotope composition (-2.1 to + 0.3 h vs. VPDB) indicates a mixed mantle-limestone origin for CO2, while He isotope composition (R/RA from 0.21 to 1.20) shows a prevailing crustal origin with an up to 15% mantle contribution. Helium and methane, with concentrations spanning over three orders of magnitude, show a positive correlation and a consequent high variability of He/CO2 and CH4/CO2 ratios. This variability can be attributed to the interaction of the uprising gases with groundwater that chemically fractionates them due to their different solubility. Based on the CO2, CH4 and He concentrations, gas samples collected in the basin can be divided in 3 groups: a) deep reservoir gases, b) enriched in less soluble gases and c) depleted in less soluble gases. The first group consists of gas samples collected at the Air Liquide extraction wells, which tap a 300m deep reservoir. This group can be considered as the least affected by fractionation processes due to interaction with groundwater. The gases of the second group due to their interaction with shallower unsaturated aquifers, become progressively enriched in less soluble gases (He and CH4). Finally, the third group represents residual gas phases after extensive degassing of the groundwater during its hydrological pathway

    Hybrid PET- and MR-driven attenuation correction for enhanced ¹⁸F-NaF and ¹⁸F-FDG quantification in cardiovascular PET/MR imaging

    Get PDF
    Background: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from ¹⁸F-Sodium Fluoride (¹⁸F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for ¹⁸F-NaF and ¹⁸F-Fluorodeoxyglucose (¹⁸F-FDG) PET/MR cardiovascular imaging. Methods: We introduce 5-class Ki/MR-AC for (i) ¹⁸F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) ¹⁸F-FDG-only data, with a streamlined simultaneous administration of ¹⁸F-FDG and ¹⁸F-NaF at 4:1 ratio (R4:1), or (iii) for ¹⁸F-FDG-only or both ¹⁸F-FDG and ¹⁸F-NaF dual-tracer data, by administering ¹⁸F-NaF 90 minutes after an equal ¹⁸F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). Results: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone ¹⁸F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (¹⁸F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher ¹⁸F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean ¹⁸F-FDG:¹⁸F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (¹⁸F-FDG) and 15.5% (¹⁸F-NaF) at carotid bifurcations and 21.6% (¹⁸F-FDG) and 22.5% (¹⁸F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. Conclusions: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance ¹⁸F-NaF and ¹⁸F-FDG contrast and quantification in bone tissues and carotid walls

    The major geoeffective solar eruptions of 2012 March 7: comprehensive Sun-to-Earth analysis

    Get PDF
    During the interval 2012 March 7-11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 kms-1) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13R⊙ to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.Publisher PDFPeer reviewe

    European breast surgical oncology certification theoretical and practical knowledge curriculum 2020

    Get PDF
    The Breast Surgery theoretical and practical knowledge curriculum comprehensively describes the knowledge and skills expected of a fully trained surgeon practicing in the European Union and European Economic Area (EEA). It forms part of a range of factors that contribute to the delivery of high quality cancer care. It has been developed by a panel of experts from across Europe and has been validated by professional breast surgery societies in Europe. The curriculum maps closely to the syllabus of the Union of European Medical Specialists (UEMS) Breast Surgery Exam, the UK FRCS (breast specialist interest) curriculum and other professional standards across Europe and globally (USA Society of Surgical Oncology, SSO). It is envisioned that this will serve as the basis for breast surgery training, examination and accreditation across Europe to harmonise and raise standards as breast surgery develops as a separate discipline from its parent specialties (general surgery, gynaecology, surgical oncology and plastic surgery). The curriculum is not static but will be revised and updated by the curriculum development group of the European Breast Surgical Oncology Certification group (BRESO) every 2 years
    corecore