20 research outputs found

    Frequent chromosome aberrations revealed by molecular cytogenetic studies in patients with aniridia

    Get PDF
    Seventy-seven patients with aniridia, referred for cytogenetic analysis predominantly to assess Wilms tumor risk, were studied by fluorescence in situ hybridization (FISH), through use of a panel of cosmids encompassing the aniridia-associated PAX6 gene, the Wilms tumor predisposition gene WT1, and flanking markers, in distal chromosome 11p13. Thirty patients were found to be chromosomally abnormal. Cytogenetically visible interstitial deletions involving 11p13 were found in 13 patients, 11 of which included WT1. A further 13 patients had cryptic deletions detectable only by FISH, 3 of which included WT1. Six of these, with deletions <500 kb, share a similar proximal breakpoint within a cosmid containing the last 10 exons of PAX6 and part of the neighboring gene, ELP4. Two of these six patients were mosaic for the deletion. The remaining four had chromosomal rearrangements: an unbalanced translocation, t(11;13), with a deletion including the WAGR (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) region, and three balanced rearrangements with what appear to be position effect breakpoints 3' of PAX6: (a) a t(7;11) with the 11p13 breakpoint ~30 kb downstream of PAX6, (b) a dir ins(12;11) with a breakpoint >50 kb from PAX6, and (c) an inv(11)(p13q13) with a breakpoint >75 kb downstream of PAX6. The proportion and spectrum of chromosome anomalies in familial (4/14, or 28.5%) and sporadic (26/63, or 41%) cases are not significantly different. An unexpectedly high frequency of chromosomal rearrangements is associated with both sporadic and familial aniridia in this cohort

    A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome

    No full text
    Williams-Beuren syndrome (WBS) is most often caused by hemizygous deletion of a 1.5-Mb interval encompassing at least 17 genes at 7q11.23 (refs. 1,2). As with many other haploinsufficiency diseases, the mechanism underlying the WBS deletion is thought to be unequal meiotic recombination, probably mediated by the highly homologous DNA that flanks the commonly deleted region. Here, we report the use of interphase fluorescence in situ hybridization (FISH) and pulsed-field gel electrophoresis (PFGE) to identify a genomic polymorphism in families with WBS, consisting of an inversion of the WBS region. We have observed that the inversion is hemizygous in 3 of 11 (27%) atypical affected individuals who show a subset of the WBS phenotypic spectrum but do not carry the typical WBS microdeletion. Two of these individuals also have a parent who carries the inversion. In addition, in 4 of 12 (33%) families with a proband carrying the WBS deletion, we observed the inversion exclusively in the parent transmitting the disease-related chromosome. These results suggest the presence of a newly identified genomic variant within the population that may be associated with the disease. It may result in predisposition to primarily WBS-causing microdeletions, but may also cause translocations and inversions.link_to_OA_fulltex
    corecore