329 research outputs found

    Design improvement of a 245-kV SF6 circuit breaker with double-speed mechanism through current zero analysis

    Get PDF
    This paper presents the results of current zero measurements during short-line fault interruption tests performed on three variants of an SF6 circuit breaker (CB) (245 kV, 40 kA) with a new mechanism for increasing the contact motion speed, shortly named double-speed mechanism, in order to distinguish between double-motion systems where both contacts are moving. The application of a double-speed mechanism provides the necessary increase of contact separation speed, without a significant increase of opening energy. Besides that, it does not requires any fixed mechanical connection between the stationary and moving contacts through the nozzle. This feature has a positive impact on the CB reliability and creates the possibility of easier assembly and dismantling of the interrupter from its insulator. High-resolution measurements of near current-zero arc current and voltage were carried out during these tests. Different levels of information on the "quality of interruption," obtained from current zero measurements are presented. Direct observation of arc current and arc voltage data are analyzed. The arc conductivity very shortly (500 and 200 ns) before current zero, as an indicator of the performance of the breaker under test is discussed. All information obtained during current zero measurement is in correlation with the direct results of testing and with design improvements in successive variants of the CB

    Identification and annotation of conserved promoters and macrophage-expressed genes in the pig genome.

    Get PDF
    BACKGROUND: The FANTOM5 consortium used Cap Analysis of Gene Expression (CAGE) tag sequencing to produce a comprehensive atlas of promoters and enhancers within the human and mouse genomes. We reasoned that the mapping of these regulatory elements to the pig genome could provide useful annotation and evidence to support assignment of orthology. RESULTS: For human transcription start sites (TSS) associated with annotated human-mouse orthologs, 17% mapped to the pig genome but not to the mouse, 10% mapped only to the mouse, and 55% mapped to both pig and mouse. Around 17% did not map to either species. The mapping percentages were lower where there was not clear orthology relationship, but in every case, mapping to pig was greater than to mouse, and the degree of homology was also greater. Combined mapping of mouse and human CAGE-defined promoters identified at least one putative conserved TSS for >16,000 protein-coding genes. About 54% of the predicted locations of regulatory elements in the pig genome were supported by CAGE and/or RNA-Seq analysis from pig macrophages. CONCLUSIONS: Comparative mapping of promoters and enhancers from humans and mice can provide useful preliminary annotation of other animal genomes. The data also confirm extensive gain and loss of regulatory elements between species, and the likelihood that pigs provide a better model than mice for human gene regulation and function

    Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose

    Get PDF
    Background Diabetes is a risk factor for respiratory infection, and hyperglycaemia is associated with increased glucose in airway surface liquid and risk of Staphylococcus aureus infection. Objectives To investigate whether elevation of basolateral/blood glucose concentration promotes airway Staphylococcus aureus growth and whether pretreatment with the antidiabetic drug metformin affects this relationship. Methods Human airway epithelial cells grown at air–liquid interface (±18 h pre-treatment, 30 ΌM–1 mM metformin) were inoculated with 5×105 colony-forming units (CFU)/cm2 S aureus 8325-4 or JE2 or Pseudomonas aeruginosa PA01 on the apical surface and incubated for 7 h. Wild-type C57BL/6 or db/db (leptin receptor-deficient) mice, 6–10 weeks old, were treated with intraperitoneal phosphate-buffered saline or 40 mg/kg metformin for 2 days before intranasal inoculation with 1×107 CFU S aureus. Mice were culled 24 h after infection and bronchoalveolar lavage fluid collected. Results Apical S aureus growth increased with basolateral glucose concentration in an in vitro airway epithelia–bacteria co-culture model. S aureus reduced transepithelial electrical resistance (RT) and increased paracellular glucose flux. Metformin inhibited the glucose-induced growth of S aureus, increased RT and decreased glucose flux. Diabetic (db/db) mice infected with S aureus exhibited a higher bacterial load in their airways than control mice after 2 days and metformin treatment reversed this effect. Metformin did not decrease blood glucose but reduced paracellular flux across ex vivo murine tracheas. Conclusions Hyperglycaemia promotes respiratory S aureus infection, and metformin modifies glucose flux across the airway epithelium to limit hyperglycaemia-induced bacterial growth. Metformin might, therefore, be of additional benefit in the prevention and treatment of respiratory infection

    Impact of medications prescribed for treatment of attention-deficit hyperactivity disorder on physical growth in children and adolescents with HIV.

    Get PDF
    OBJECTIVE: To examine the relationships between physical growth and medications prescribed for symptoms of attention-deficit hyperactivity disorder in children with HIV. METHODS: Analysis of data from children with perinatally acquired HIV (N = 2251; age 3-19 years), with and without prescriptions for stimulant and nonstimulant medications used to treat attention-deficit hyperactivity disorder, in a long-term observational study. Height and weight measurements were transformed to z scores and compared across medication groups. Changes in z scores during a 2-year interval were compared using multiple linear regression models adjusting for selected covariates. RESULTS: Participants with (n = 215) and without (n = 2036) prescriptions were shorter than expected based on US age and gender norms (p \u3c .001). Children without prescriptions weighed less at baseline than children in the general population (p \u3c .001) but gained height and weight at a faster rate (p \u3c .001). Children prescribed stimulants were similar to population norms in baseline weight; their height and weight growth velocities were comparable with the general population and children without prescriptions (for weight, p = .511 and .100, respectively). Children prescribed nonstimulants had the lowest baseline height but were similar to population norms in baseline weight. Their height and weight growth velocities were comparable with the general population but significantly slower than children without prescriptions (p = .01 and .02, respectively). CONCLUSION: The use of stimulants to treat symptoms of attention-deficit hyperactivity disorder does not significantly exacerbate the potential for growth delay in children with HIV and may afford opportunities for interventions that promote physical growth. Prospective studies are needed to confirm these findings

    Comparative transcriptome analysis of equine alveolar macrophages

    Get PDF
    Reasons for performing study: Alveolar macrophages (AMs) are the first line of defence against pathogens in the lungs of all mammalian species and thus may constitute appropriate therapeutic target cells in the treatment and prevention of opportunistic airway infections. Therefore, acquiring a better understanding of equine macrophage biology is of paramount importance in addressing this issue in relation to the horse. Objectives: To compare the transcriptome of equine AMs with that of equine peritoneal macrophages (PMs) and to investigate the effect of lipopolysaccharide (LPS) on equine AM. Study design: Gene expression study of equine AMs. Methods: Cells from both bronchoalveolar and peritoneal lavage fluid were isolated from systemically healthy horses that had been submitted to euthanasia. Cells were cryopreserved. RNA was extracted and comparative microarray analyses were performed in AMs and PMs, and in AMs treated and untreated with LPS. Comparisons with published data derived from human AM studies were made, with particular focus on LPS-induced inflammatory status. Results: The comparison between AMs and PMs revealed the differential basal expression of 451 genes. Gene expression analysis revealed an alternative (M2) macrophage polarisation profile in AMs and a hybrid macrophage activation profile in PMs, a phenomenon potentially attributable to a degree of induced endotoxin tolerance. The gene expression profile of equine AMs following LPS stimulation revealed significant changes in the expression of 240 genes, including well-known upregulated inflammatory genes. This LPS-induced gene expression profile of equine AMs more closely resembles that of human rather than murine macrophages. Conclusions: This study improves current understanding of equine macrophage biology. These data suggest that the horse may represent a suitable animal model for the study of human macrophage-associated lung inflammation and data derived from human macrophage studies may have significant relevance to the horse

    Use of structure-activity landscape index curves and curve integrals to evaluate the performance of multiple machine learning prediction models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standard approaches to address the performance of predictive models that used common statistical measurements for the entire data set provide an overview of the average performance of the models across the entire predictive space, but give little insight into applicability of the model across the prediction space. Guha and Van Drie recently proposed the use of structure-activity landscape index (SALI) curves via the SALI curve integral (SCI) as a means to map the predictive power of computational models within the predictive space. This approach evaluates model performance by assessing the accuracy of pairwise predictions, comparing compound pairs in a manner similar to that done by medicinal chemists.</p> <p>Results</p> <p>The SALI approach was used to evaluate the performance of continuous prediction models for MDR1-MDCK <it>in vitro </it>efflux potential. Efflux models were built with ADMET Predictor neural net, support vector machine, kernel partial least squares, and multiple linear regression engines, as well as SIMCA-P+ partial least squares, and random forest from Pipeline Pilot as implemented by AstraZeneca, using molecular descriptors from <it>SimulationsPlus </it>and AstraZeneca.</p> <p>Conclusion</p> <p>The results indicate that the choice of training sets used to build the prediction models is of great importance in the resulting model quality and that the SCI values calculated for these models were very similar to their Kendall τ values, leading to our suggestion of an approach to use this SALI/SCI paradigm to evaluate predictive model performance that will allow more informed decisions regarding model utility. The use of SALI graphs and curves provides an additional level of quality assessment for predictive models.</p

    Bacterial resistance to arsenic protects against protist killing

    Get PDF
    Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator–prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments

    Early changes in bone mineral density measured by digital X-ray radiogrammetry predict up to 20 years radiological outcome in rheumatoid arthritis

    Get PDF
    ABSTRACT: INTRODUCTION: Change in bone mineral density (BMD) in the hand, as evaluated by digital X-ray radiogrammetry (DXR) of the II-IV metacarpal bones, has been suggested to predict future joint damage in rheumatoid arthritis (RA). This study's objective was to investigate if DXR-BMD loss early in the disease predicts development of joint damage in RA patients followed for up to 20 years. METHODS: 183 patients (115 women and 68 men) with early RA (mean disease duration 11 months) included from 1985 to 1989 were followed prospectively (the Lund early RA cohort). Clinical and functional measures were assessed yearly. Joint damage was evaluated according to the Larsen score on radiographs of hands and feet taken in years 0 to 5, 10, 15 and 20. These radiographs were digitized and BMD of the II-IV metacarpal bones was evaluated by DXR (Sectra, Linkoping. Sweden). Early DXR-BMD change rate (bone loss) per year calculated from the first 2 radiographs taken on average 9 months apart (SD 4.8) were available for 135 patients. Mean values of right and left hand were used. RESULTS: Mean early DXR-BMD loss during the first year calculated was -0.023 g/cm2 (SD 0.025). Patients with marked bone loss, i.e. early DXR-BMD loss above the median for the group, had significantly worse progression of joint damage at all examinations during the 20-year period. CONCLUSIONS: Early DXR-BMD progression rate predicted development of joint damage evaluated according to Larsen at year one and further onwards up to 20 years in this cohort of early RA patients

    Retinal Muller Glia Initiate Innate Response to Infectious Stimuli via Toll-Like Receptor Signaling

    Get PDF
    Ocular surgeries and trauma predispose the eye to develop infectious endophthalmitis, which often leads to vision loss. The mechanisms of initiation of innate defense in this disease are not well understood but are presumed to involve retinal glial cells. We hypothesize that retinal Muller glia can recognize and respond to invading pathogens via TLRs, which are key regulators of the innate immune system. Using the mouse retinal sections, human retinal Muller cell line (MIO-M1), and primary mouse retinal Muller cells, we show that they express known human TLR1-10, adaptor molecules MyD88, TRIF, TRAM, and TRAF6, and co-receptors MD2 and CD14. Consistent with the gene expression, protein levels were also detected for the TLRs. Moreover, stimulation of the Muller glia with TLR 2, 3, 4, 5, 7 and 9 agonists resulted in an increased TLR expression as assayed by Western blot and flow cytometry. Furthermore, TLR agonists or live pathogen (S. aureus, P. aeruginosa, & C. albicans)-challenged Muller glia produced significantly higher levels of inflammatory mediators (TNF-α, IL-1ÎČ, IL-6 and IL-8), concomitantly with the activation of NF-ÎșB, p38 and Erk signaling. This data suggests that Muller glia directly contributes to retinal innate defense by recognizing microbial patterns under infectious conditions; such as those in endophthalmitis
    • 

    corecore